

US009486224B2

(12) United States Patent

Riina et al.

(10) Patent No.: US 9,486,224 B2 (45) Date of Patent: Nov. 8, 2016

(54) METHOD AND APPARATUS FOR RESTRICTING FLOW THROUGH AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE STILL MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN

(71) Applicant: Cornell University, Ithaca, NY (US)

(72) Inventors: Howard Riina, Scarsdale, NY (US);
Jeffrey Milsom, New York, NY (US);
J. Frederick Cornhill, New York, NY
(US); Tuan Anh Nguyen, Woburn, MA
(US); Kevin Smith, Stamford, CT
(US); Kevin Keough, Canton, MA
(US); Robert Andrews, Norfolk, MA

(73) Assignee: Cornell University, Ithaca, NY (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 14/622,250

(22) Filed: Feb. 13, 2015

(65) Prior Publication Data

US 2015/0216534 A1 Aug. 6, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/437,777, filed on Apr. 2, 2012, now Pat. No. 8,956,475, which is a continuation-in-part of application No. 12/657,598, filed on Jan. 22, 2010, now Pat. No. 8,663,301, which

(Continued)

(51) Int. Cl. A61M 29/00 (2006.01) A61B 17/12 (2006.01)

(Continued)

(52) **U.S. Cl.** CPC ... *A61B 17/12172* (2013.01); *A61B 17/12022* (2013.01); *A61B 17/12118* (2013.01);

(Continued)

 2017/12054; A61B 2017/00867; C22F 1/006; A61N 5/0616; A61H 23/00; A61F 2/86; A61F 2230/0095; A61F 2230/005; A61F 2230/0091; A61F 2002/823; A61F 2/95; A61F 2230/0071; A61F 2/91; A61F 2002/30242

USPC 606/200, 191, 127–128; 623/1.11–1.35 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,431,906 A *	3/1969	Taylor A61F 6/142
4,619,246 A 4,994,069 A *		Molgaard-nielsen et al. Ritchart A61B 17/12022
4,994,096 A 5,092,894 A *		604/104 Klein et al. Kenny A61F 2/3872 128/898

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1216929 5/1999 EP 1 129 666 9/2001 (Continued)

OTHER PUBLICATIONS

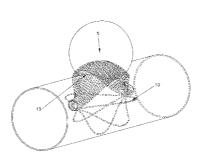
Henkes et al., Endovascular Coil Occlusion of Intracranial Aneurysms Assisted by a Novel Self-Expandable Nitinol Microstent (Neuroform), Interventional Neuroradiology, 2002, 8: 107-119.

Primary Examiner — Amy R Weisberg

(74) Attorney, Agent, or Firm — Pandiscio & Pandiscio

(57) ABSTRACT

A method for making a device for causing thrombosis of an aneurysm, wherein said device comprises a single elastic filament configurable between (i) an elongated, substantially linear configuration, and (ii) a longitudinally-contracted, substantially three-dimensional configuration, said method comprising:

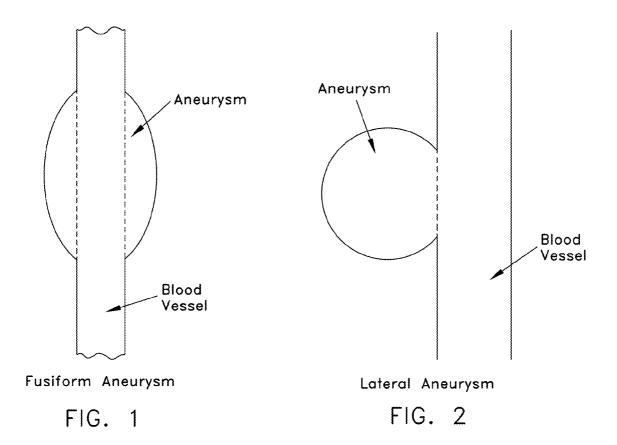

providing a sheet of shape memory material;

producing a single filament, two-dimensional interim structure from said sheet of shape memory material;

mounting said single filament, two-dimensional interim structure to a fixture so that said single filament, two-dimensional interim structure is transformed into said longitudinally-contracted, substantially three-dimensional configuration; and

heat treating said single filament, two-dimensional interim structure while it is mounted to said fixture so as to produce said device in its longitudinally-contracted, substantially three-dimensional configuration.

5 Claims, 77 Drawing Sheets

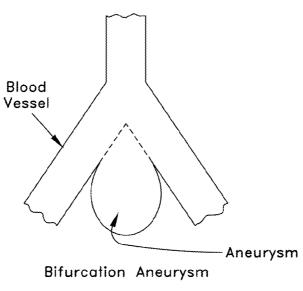
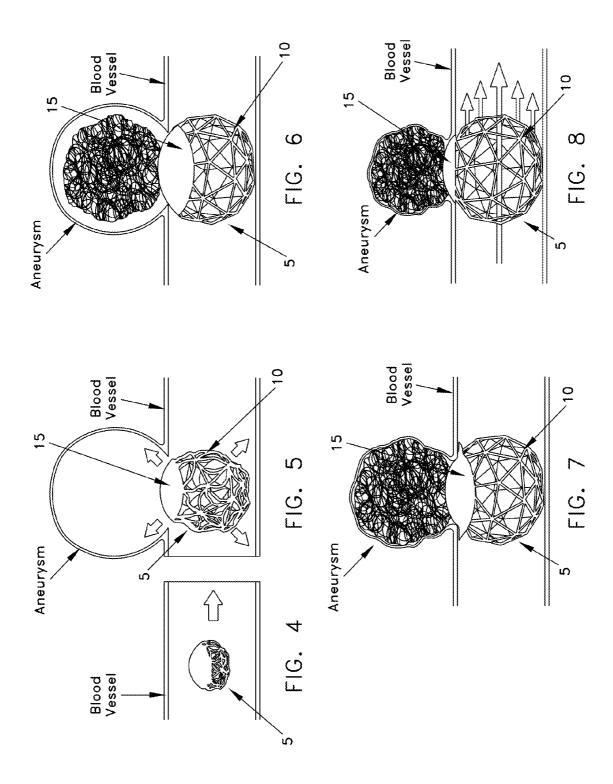
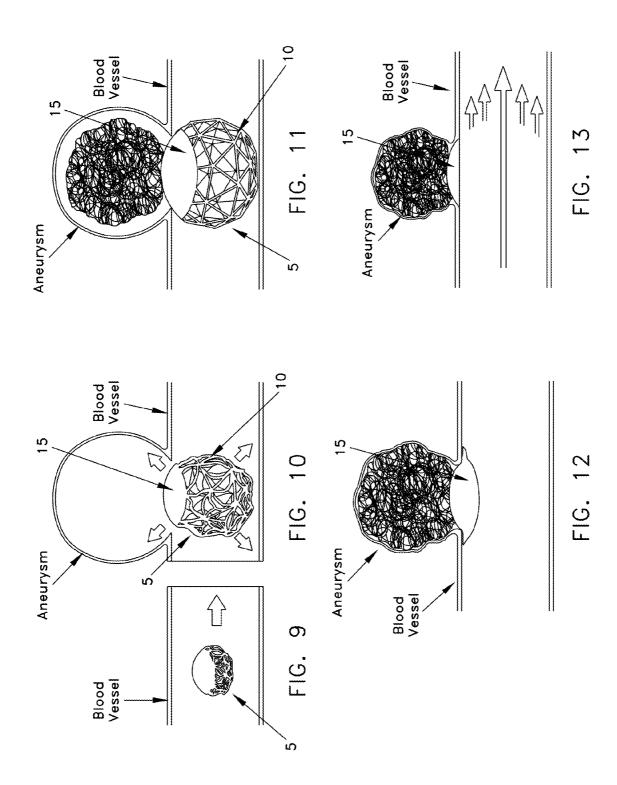
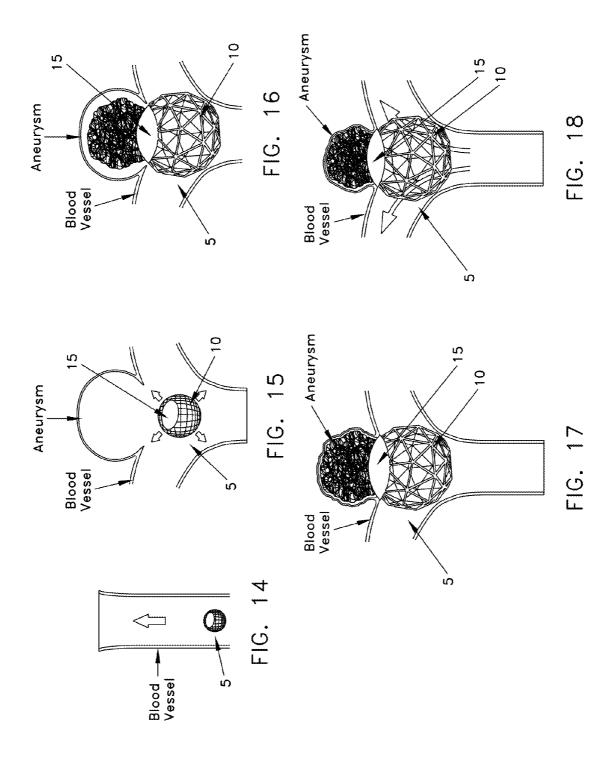
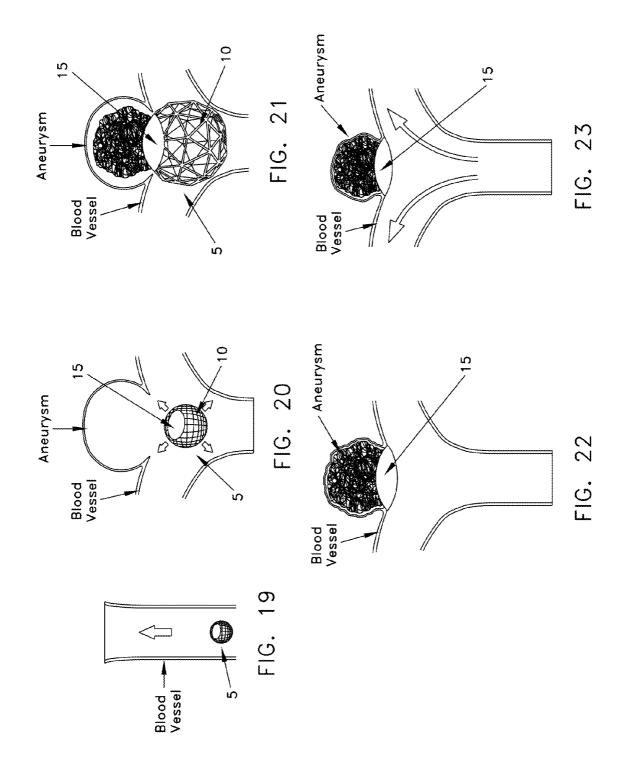


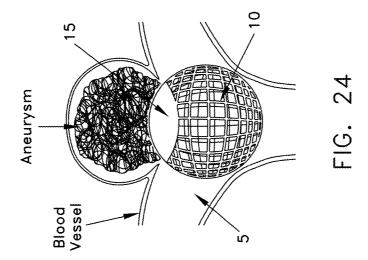
	Relate	d U.S. A	application Data		6,190,353	В1	2/2001	Makower et al.	
			art of application No. 12/33	32,	6,190,402		2/2001	Horton	A61B 17/12118 606/108
		-	2008, now Pat. No. 8,728,14		6,221,086		4/2001		
((0)				6,231,587 6,261,305			Makower Marotta et al.		
(60)			n No. 61/007,189, filed on Do		6,283,951			Flaherty et al.	
			application No. 61/205,68		6,283,983	B1		Makower et al.	
			9, provisional application N		6,302,875			Makower et al.	
			Sep. 24, 2009, provisional a 733, filed on Apr. 1, 2011.	ар-	6,309,415 6,322,576	B1		Pulnev et al. Wallace et al.	
	pheadon No.	01/4/0,/	33, med on Apr. 1, 2011.		6,325,820			Khosravi et al.	
(51)	Int. Cl.				6,330,884		12/2001		A CAD 45/12022
	C22F 1/00		(2006.01)		6,344,041	BI*	2/2002	Kupiecki	A61B 17/12022 604/104
	A61F 2/86		(2013.01)		6,364,895	В1	4/2002	Greenhalgh	001/101
	A61H 23/00		(2006.01)		6,368,338			Konya et al.	
	A61N 5/06		(2006.01)		6,375,615 6,379,319			Flaherty et al. Garibotto et al.	
	A61B 17/00		(2006.01)		6,428,558			Jones et al.	
	A61F 2/82		(2013.01)		6,432,127			Kim et al.	
	A61F 2/91		(2013.01)		6,482,222 6,540,657			Bruckheimer et a Cross, III et al.	al.
	A61F 2/95		(2013.01)		6,544,230			Flaherty et al.	
	A61F 2/30		(2006.01)		6,551,303	B1	4/2003	Van Tassel et al.	
` /	U.S. Cl.	4.C1D1	7/13/13/ (2012-01) - ///E-3/	/0. <i>c</i>	6,551,344 6,569,179		4/2003	Thill Teoh et al.	
			7/12131 (2013.01); A61F 2/		6,579,311			Makower	
			A61H 23/00 (2013.01); A6 (3.01); C22F 1/006 (2013.0		6,585,748	B1	7/2003		
	370		3 2017/00867 (2013.01); A6		6,585,756			Strecker Palmer et al.	
	2017/1		013.01); A61F 2/82 (2013.0		6,589,265 6,592,605			Lenker et al.	
			013.01); A61F 2/95 (2013.0		6,605,111	B2	8/2003	Bose et al.	
			242 (2013.01); A61F 2002/8		6,613,074			Mitelberg et al.	
			1F 2230/005 (2013.01); A6		6,613,081 6,616,617			Kim et al. Ferrera et al.	
			71 (2013.01); A61F 2230/00		6,616,675	B1	9/2003	Evard et al.	
		(2013.0)	1); <i>A61F 2230/0095</i> (2013.0	01)	6,632,241			Hancock et al.	
(50)		D . f	Clark		6,635,069 6,638,291			Teoh et al. Ferrera et al.	
(56)		Keieren	ces Cited		6,638,293	В1	10/2003	Makower et al.	
	U.S. I	PATENT	DOCUMENTS		6,652,555			Van Tassel et al.	
					6,652,556 6,655,386			Van Tassel et al. Makower et al.	
	5,314,444 A		Gianturco	/0.1	6,656,218		12/2003	Denardo et al.	
3	5,350,398 A *	9/1994	Pavenik A61F 2/		6,660,024			Flaherty et al. Marotta et al.	
5	5,607,445 A *	3/1997	Summers A61F 2/		6,669,717 6,676,696			Marotta et al.	
5	5,609,627 A	2/1007	Goicoechea et al.	198	6,685,648	B2	2/2004	Flaherty et al.	
	5,645,558 A *		Horton A61B 17/120	022	6,689,150			Van Tassel et al.	
			606/1	191	6,695,876 6,709,444			Marotta et al. Makower	
5	5,649,949 A *	7/1997	Wallace A61B 17/120 600/2		6,726,677	В1	4/2004	Flaherty et al.	
5	5,669,933 A	9/1997	Simon et al.	200	6,730,108 6,746,464			Van Tassel et al. Makower	
5	5,749,891 A *	5/1998	Ken A61B 17/120		6,746,468			Sepetka et al.	
5	5,766,219 A	6/1998	Horton	108	6,790,218			Jayaraman	
	5,772,668 A		Summers et al.		6,811,560 6,855,155			Jones et al. Denardo et al.	
	5,810,874 A		Lefebvre		6,860,893			Wallace et al.	
	5,830,222 A 5,836,968 A		Makower Simon et al.		6,863,684			Kim et al.	
	5,851,537 A		Alberts et al.		6,872,218 6,878,163			Ferrera et al. Denardo et al.	
5	5,911,731 A *	6/1999	Pham A61B 17/120		6,894,092			Sylvester	
5	5,925,060 A	7/1999	Forber 140/9	2.1	6,913,618			Denardo et al.	
	5,951,599 A		McCrory		6,929,009 6,929,654			Makower et al. Teoh et al.	
	5,013,854 A		Moriuchi		6,949,113	B2		Van Tassel et al.	
	5,033,423 A 5,063,111 A		Ken et al. Hieshima et al.		6,953,472			Palmer et al.	
	5,068,638 A		Makower		6,969,401			Marotta et al.	
6	5,090,125 A		Horton	222	6,984,240 7,029,486			Ken et al. Schaefer	A61B 17/12022
6	5,093,199 A *	7/2000	Brown A61B 17/120				2000		606/191
6	5,136,015 A	10/2000	Kurz et al.		7,059,330			Makower et al.	
	5,159,165 A		Ferrera et al.		7,094,230 7,134,438			Flaherty et al. Makower et al.	
	5,159,225 A 5,165,194 A		Makower Denardo		7,134,438			Makower et al.	
6	5,165,198 A	12/2000	McGurk et al.		7,179,270	B2	2/2007	Makower	
6	5,171,326 B1	1/2001	Ferrera et al.		7,211,107	B2	5/2007	Bruckheimer et a	ıl.

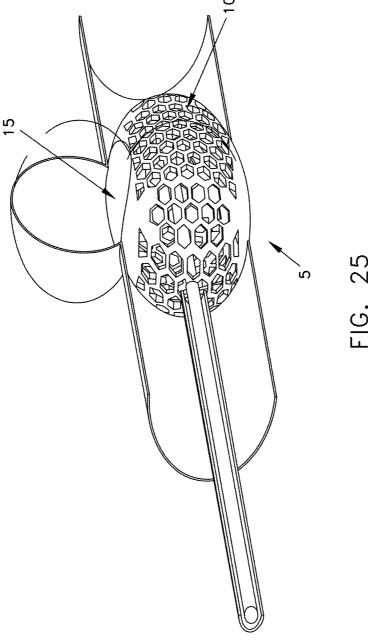
US 9,486,224 B2

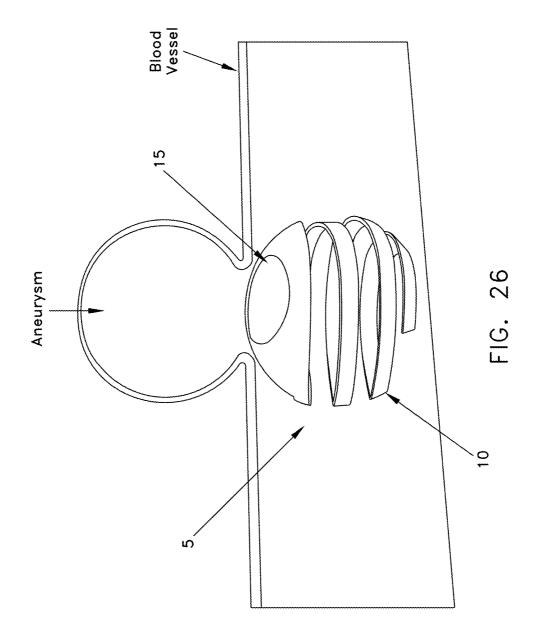
Page 3

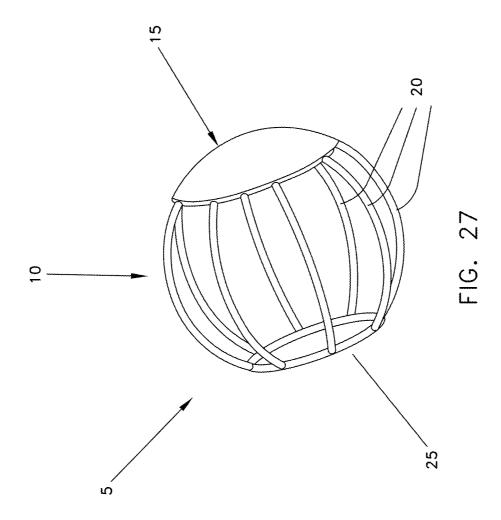
(56)	Referen	ces Cited	2006/0224183	A1* 10/2006	Freudenthal A61B 17/0057 606/213
U.S	S. PATENT	DOCUMENTS	2006/0229718		Marquez
			2006/0241686		Ferrera et al.
7,229,472 B2		DePalma et al.	2006/0267247 2007/0014831		Anukhin et al. Sung et al.
7,241,310 B2 7,279,000 B2		Taylor et al. Cartier et al.	2007/0060994		Gobran et al.
7,288,112 B2		Denardo et al.	2007/0061006		Desatnik et al.
7,303,571 B2		Makower et al.	2007/0083226	A1* 4/2007	Buiser A61B 17/12022
7,306,622 B2		Jones et al.			606/200
7,306,624 B2		Yodfat et al.	2007/0083257		Pal et al.
7,316,655 B2		Garibotto et al.	2007/0162108	A1* //2007	Carlson A61B 17/12022 623/1.34
7,316,701 B2		Ferrera et al.	2007/0198075	A1 8/2007	
7,326,225 B2 7,331,974 B2		Ferrera et al. Schaefer et al.	2007/0219619		Dieck et al.
7,407,506 B2		Makower	2007/0239261		Bose et al.
7,473,275 B2		Marquez	2007/0270902		Slazas et al.
7,485,123 B2	* 2/2009	Porter A61B 17/12022	2007/0299367		Melsheimer et al.
- 400 AAA DA	d. 0.0000	606/113	2008/0004640	A1* 1/2008	Ellingwood A61B 17/0057 606/151
7,488,332 B2	* 2/2009	Teoh A61B 17/12022	2008/0035158	A1 2/2008	Pflueger et al.
7,572,288 B2	8/2009	606/113	2008/0039933		Yodfat et al.
7,879,064 B2		Monstadt A61B 17/12022	2008/0045995	A1 2/2008	Guterman et al.
.,0.5,00. 22	2/2011	606/200	2008/0114391		Dieck et al.
8,007,509 B2		Buiser et al.	2008/0114436		Dieck et al.
8,066,036 B2	* 11/2011	Monetti A61B 17/12022	2008/0221554	A1* 9/2008	O'Connor A61B 17/12022 604/526
0 000 171 DA	1/2012	140/103	2008/0221600	A1 9/2008	Dieck et al.
8,088,171 B2 8,092,515 B2		Brenneman Johnson et al.	2008/0281350		Sepetka et al.
8,142,456 B2		Rosqueta et al.	2009/0062834		Moftakhar et al.
8,226,660 B2		Teoh et al.	2009/0065009	A1* 3/2009	Gurtner A61B 19/00
8,372,110 B2		Monstadt et al.	2009/0069836	A 1 % 2/2000	128/898
8,545,530 B2	10/2013	Eskridge et al.	2009/0009830	A1 * 3/2009	Labdag A61B 17/12022 606/191
9,056,024 B2		Tippett et al. Deem et al.	2009/0112050	A1 4/2009	Farnan et al.
2001/0012961 A1 2002/0058986 A1		Landau et al.	2009/0125053		Ferrera et al.
2002/0169473 A1		Sepetka et al.	2009/0170349	A1* 7/2009	
2002/0193812 A1		Patel et al.			439/65
2002/0193813 A1		Helkowski et al.	2009/0287241		Berez et al.
2003/0040771 A1	* 2/2003	Hyodoh A61F 2/90	2009/0297582	A1 · 12/2009	Meyer A61B 17/12022 424/423
2003/0055451 A1	3/2003	606/200 Jones et al.	2010/0010533	A1* 1/2010	Burke A61B 17/12022
2003/00099431 A1 2003/0109917 A1		Rudin et al.			606/200
2003/0125603 A1		Zunker A61F 13/266	2010/0268260		Riina et al.
	_,	600/29	2011/0022149 2011/0060194		Cox et al. Risto A61B 1/32
2003/0125790 A1 2003/0139802 A1		Fastovsky et al. Wulfman et al.	2011/0000194	A1 3/2011	600/210
2003/0139802 A1 2003/0216804 A1		DeBeer et al.	2011/0172692	A1* 7/2011	Wu A61M 1/3655
2004/0006383 A1		Zilla et al.			606/191
2004/0014253 A1		Gupta et al.	2012/0029612	A1* 2/2012	Grandt A61F 2/86
2004/0025984 A1	* 2/2004	Holemans A44C 5/0084	2012/0029623	A1* 2/2012	623/1.15 Baillargeon A61F 2/91
2004/0034386 A1	2/2004	148/563 Fulton et al.	2012/0029023	A1 2/2012	623/1.16
2004/0087998 A1		Lee et al.	2012/0239136	A1* 9/2012	Bruzzi A61F 2/90
2004/0098030 A1		Makower et al.	2012/001010		623/1.16
2004/0153142 A1		Klumb et al.	2013/0018409	A1* 1/2013	Le A61B 17/12109 606/200
2004/0172056 A1		Guterman et al.	2013/0268046	Δ1 10/2013	Gerberding et al.
2004/0181253 A1			2014/0142608		Eskridge et al.
2004/0210298 A1 2004/0260384 A1		Rabkin et al.	2015/0313737		Tippett et al.
2005/0107823 A1		Leone et al.	2015/0342762		Tippett et al.
2005/0187564 A1		Jayaraman A61B 17/12022			
		606/141	FOI	REIGN PATE	NT DOCUMENTS
2005/0192618 A1			ID 200		0/2004
2005/0192619 A1		Teoh et al.		01-212152 07-536943	8/2001 12/2007
2005/0192620 A1		Cully et al. Kugler A61B 17/12009		97/27893	8/1997
2005/0283235 A1	12/2003	623/14.13		05/072196	8/2005
2006/0047299 A1	3/2006	Ferguson	WO WO 200	06/032289	3/2006
2006/0052816 A1		Bates et al.		06/091195	8/2006
2006/0095110 A1		Moberg et al.		07/076480	4/2007
2006/0116625 A1	6/2006	Renati et al.		07/076480 08/022327	7/2007 2/2008
2006/0116709 A1		Sepetka et al.		08/022327	12/2008
2006/0116712 A1		Sepetka et al.		09/076515	6/2009
2006/0135947 A1		Soltesz et al.	WO WO 201	14/066982	5/2014
2006/0142845 A1 2006/0200234 A1		Molaei et al.	* cited by exar	miner	
	2, 2000		inca of each		

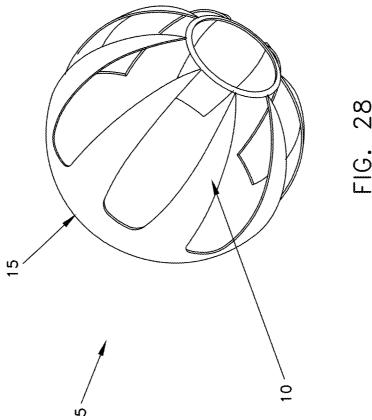






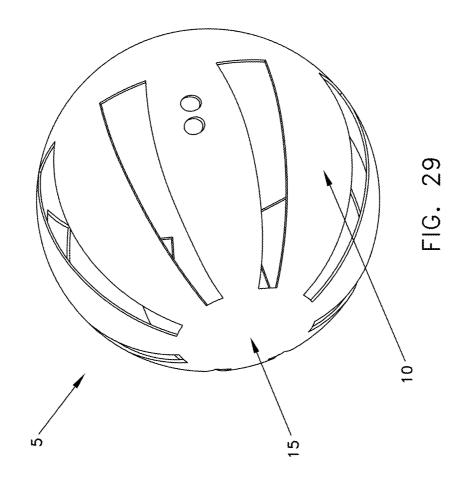

FIG. 3

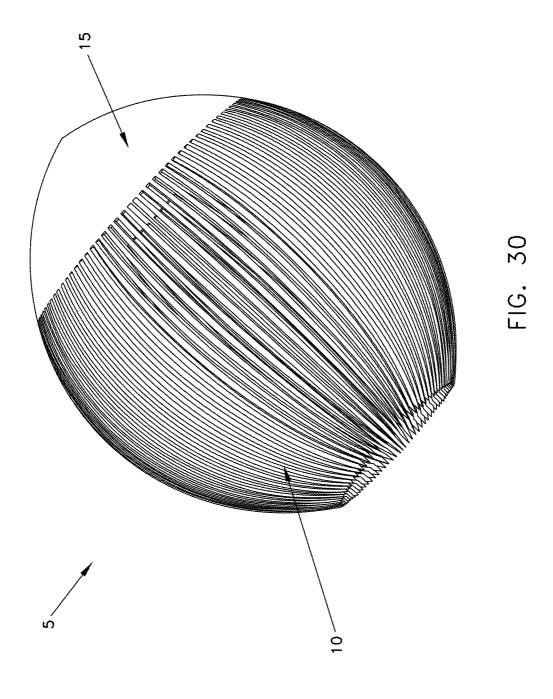


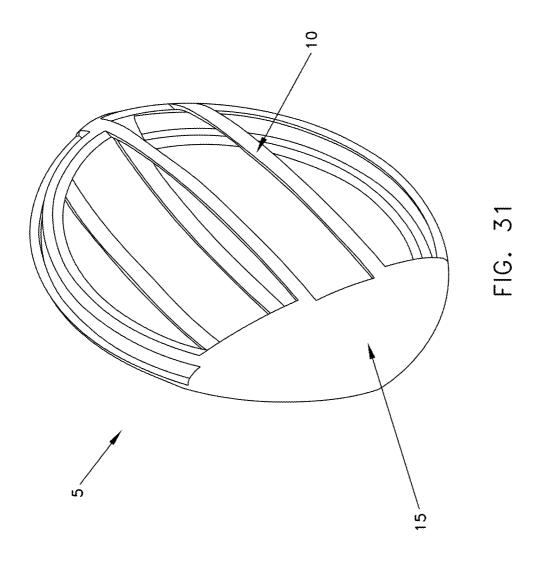


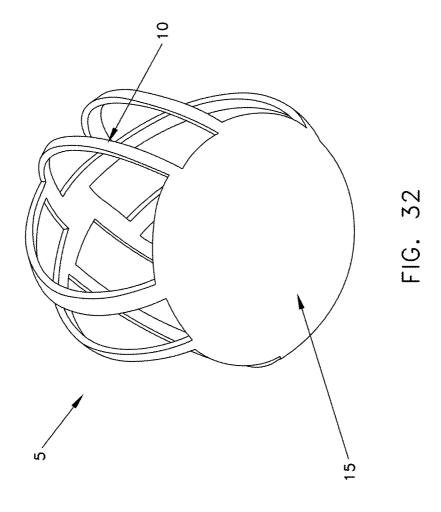


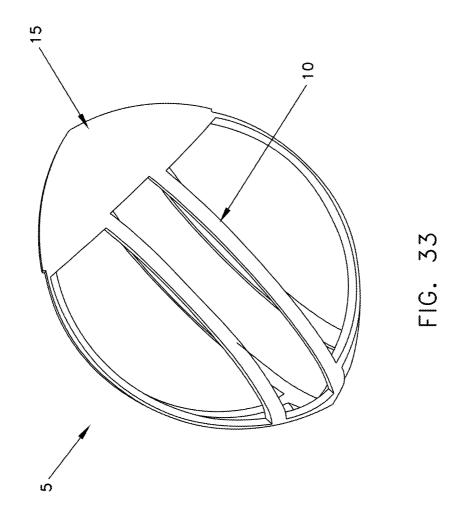


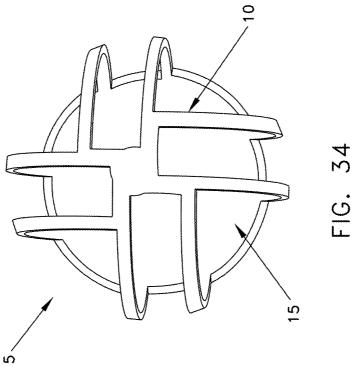


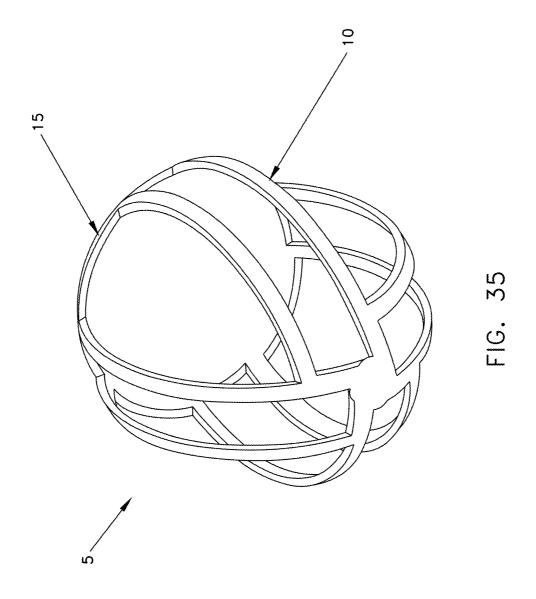


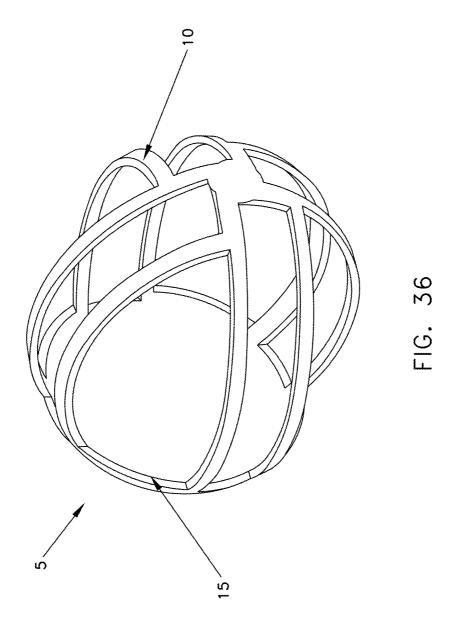


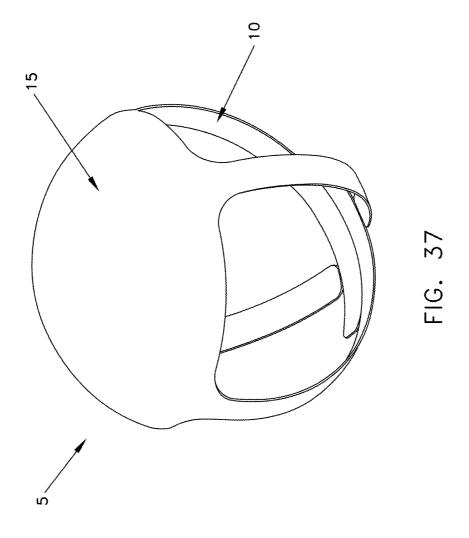


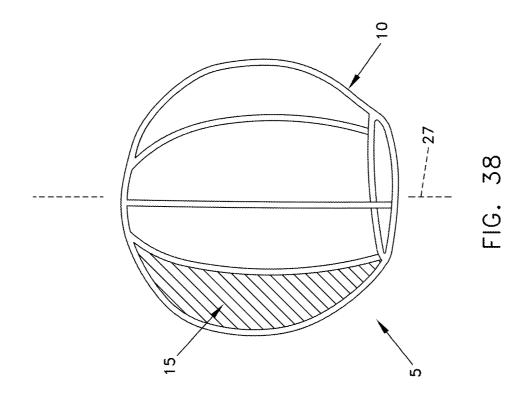


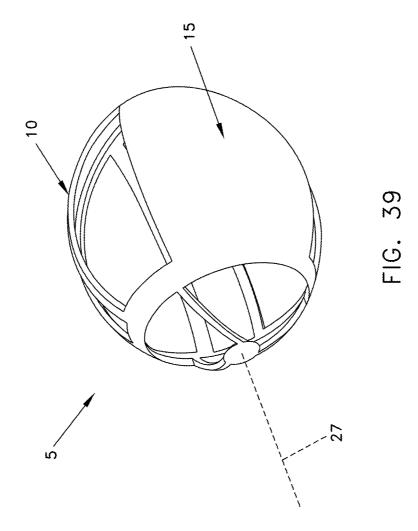


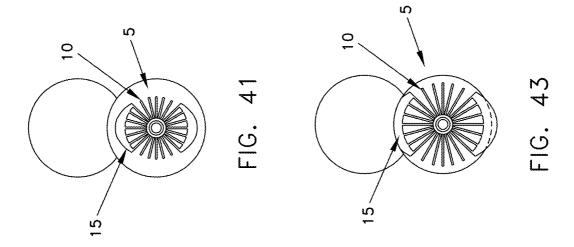


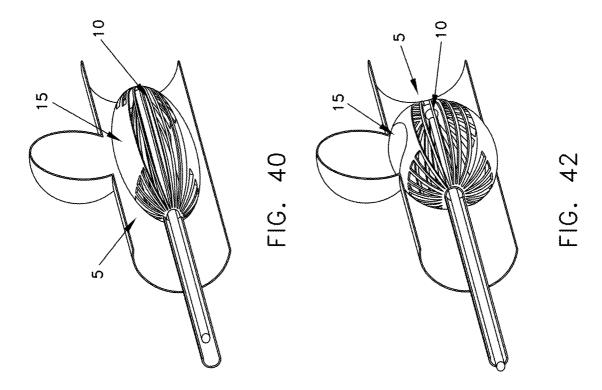


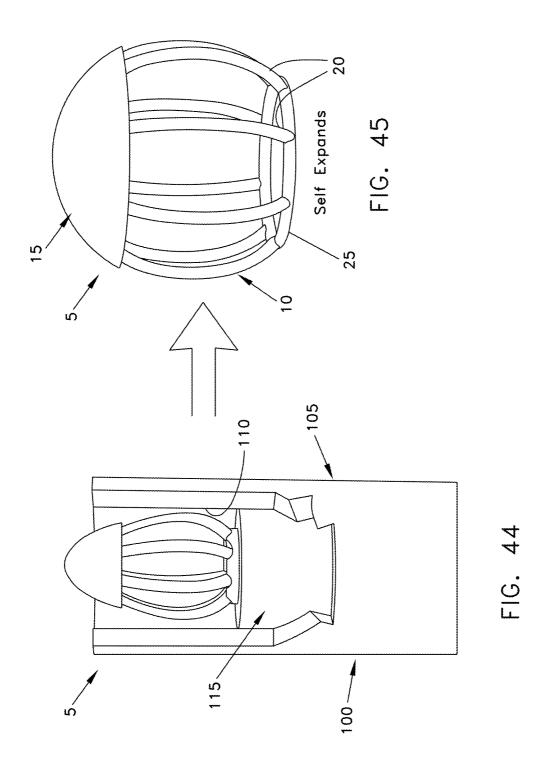


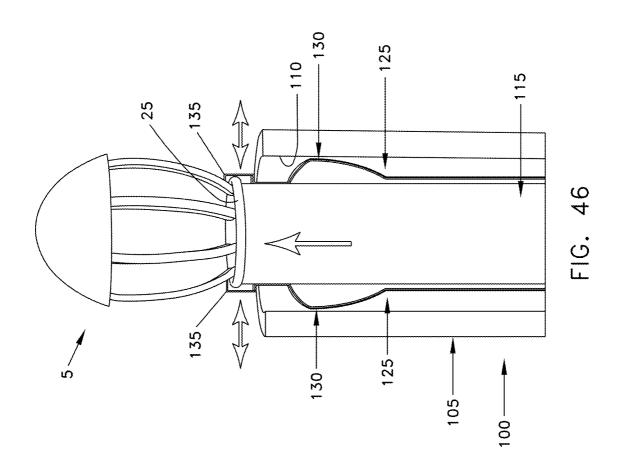


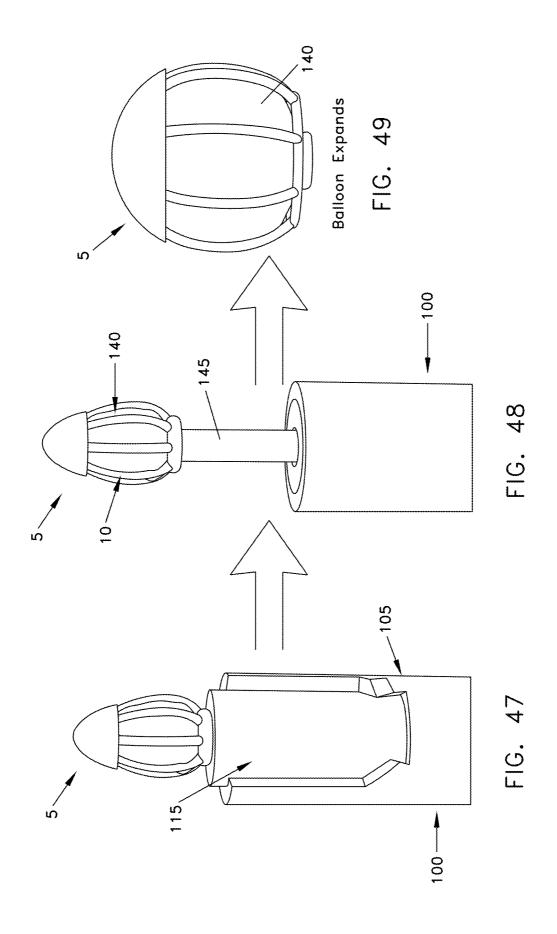


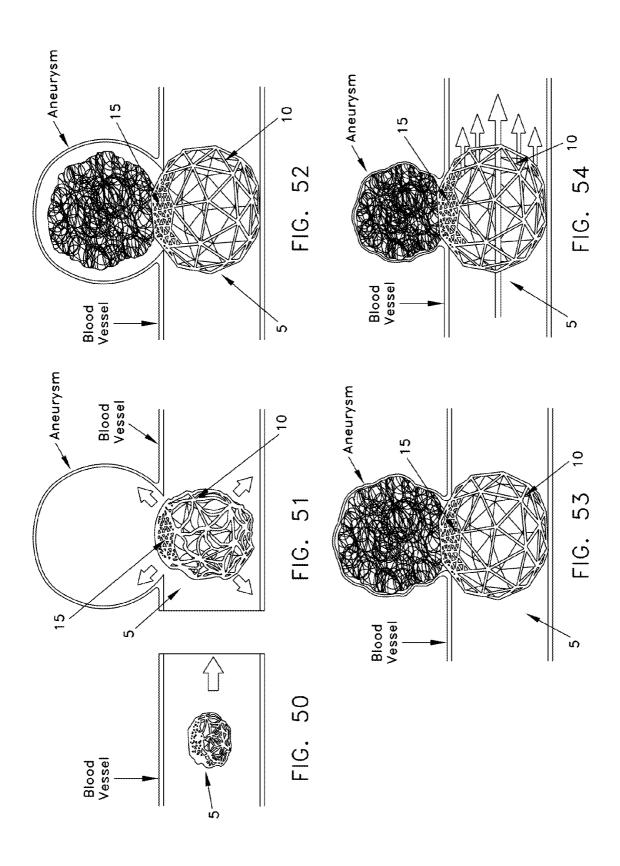


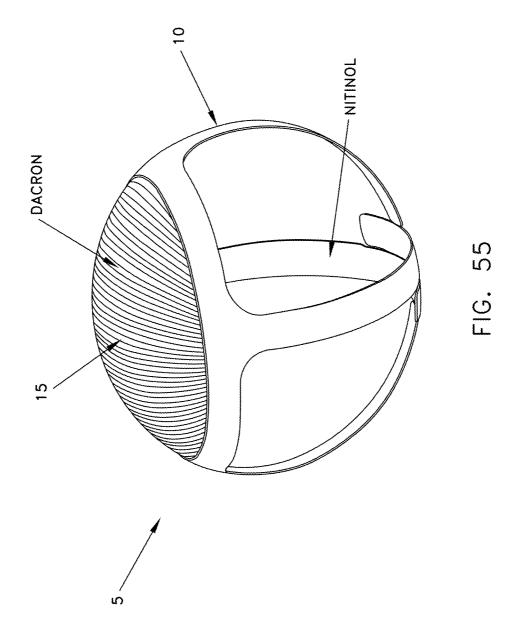


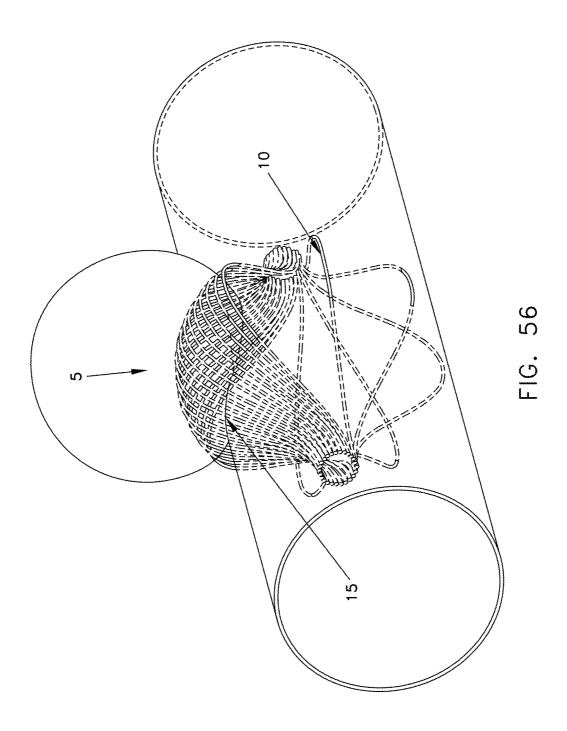

Nov. 8, 2016

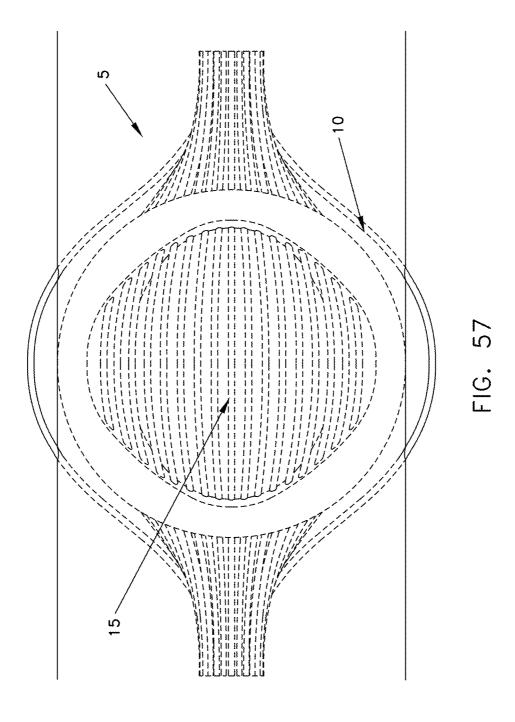


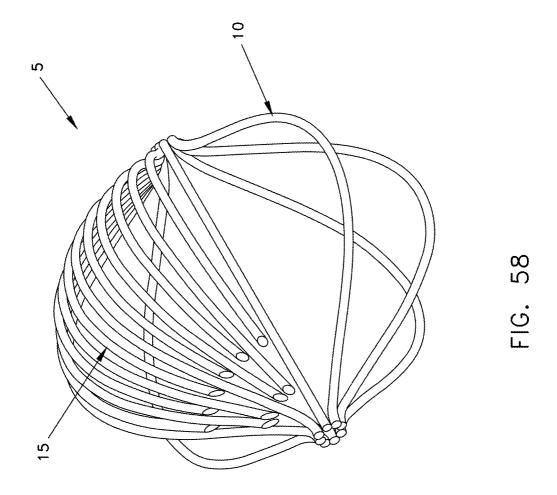


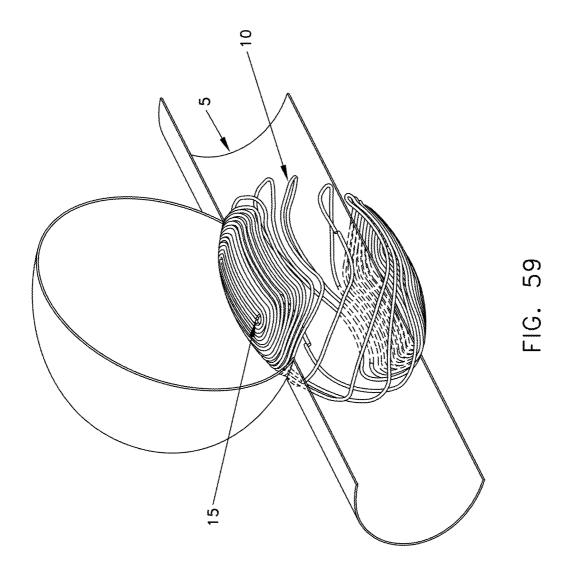


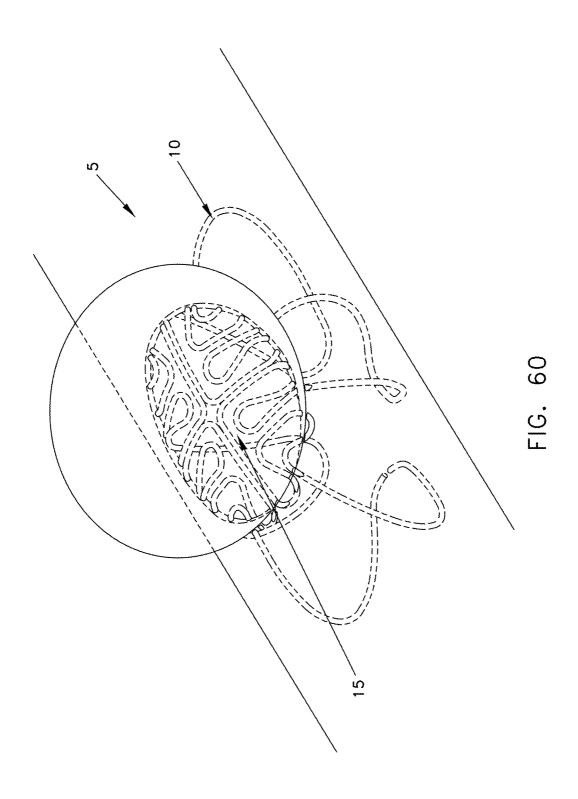


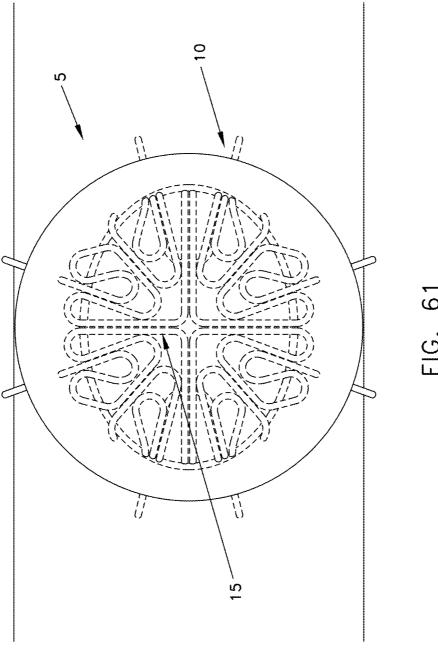


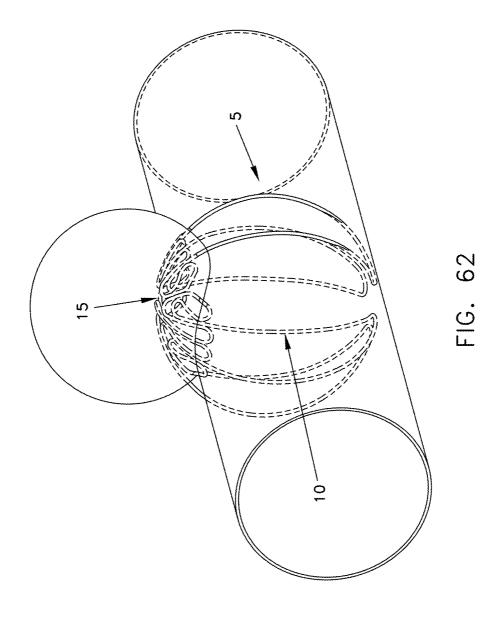


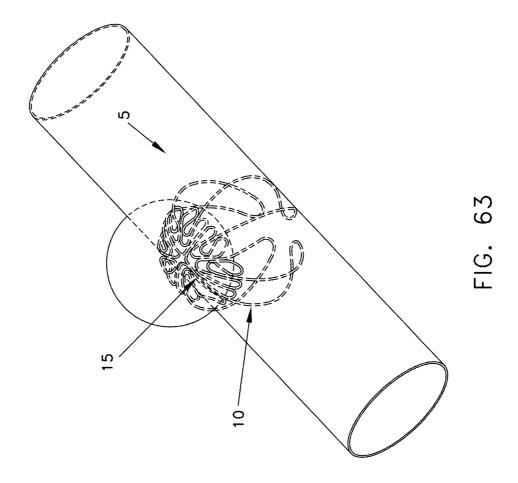


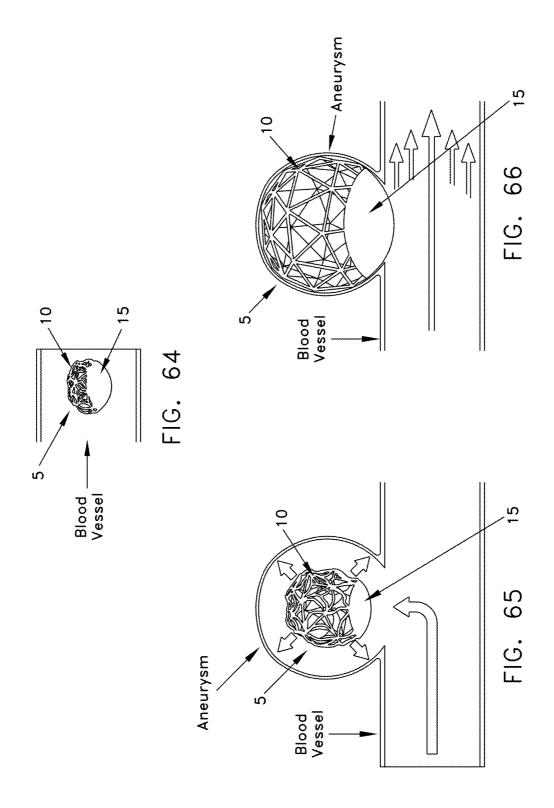


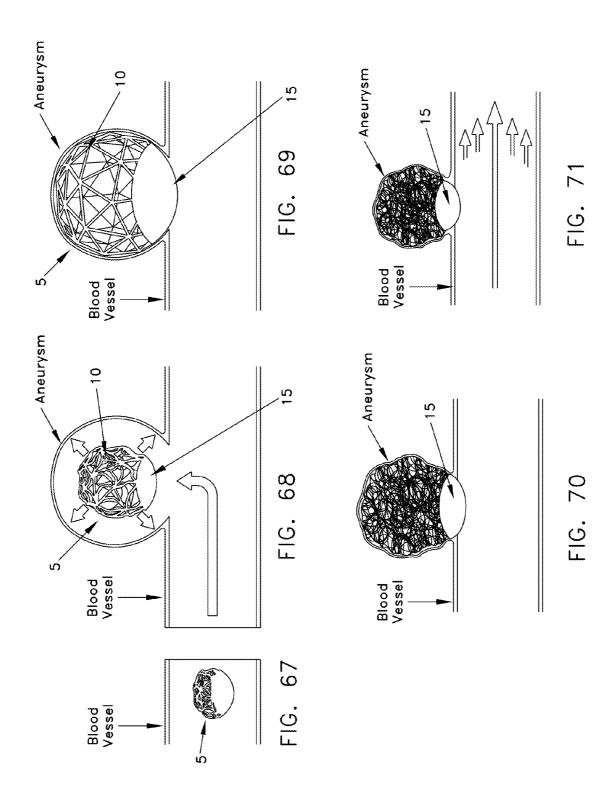


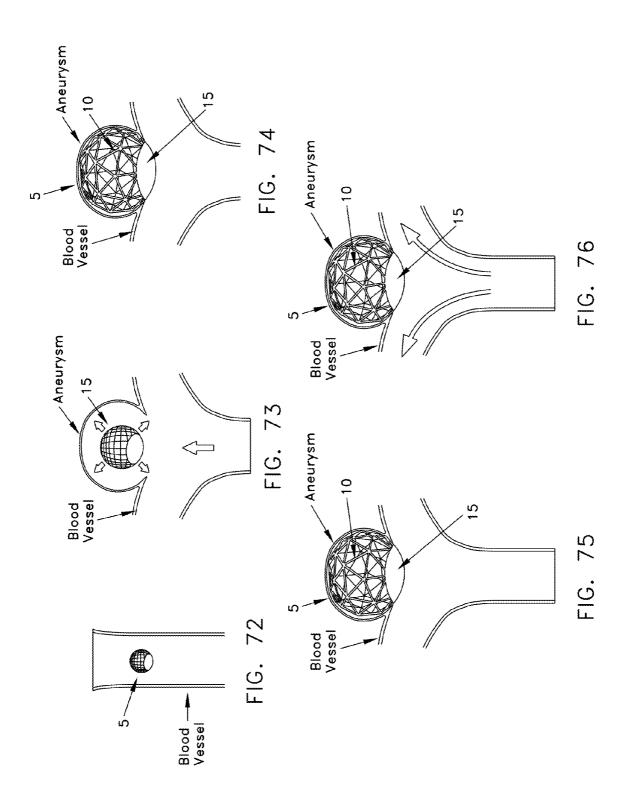


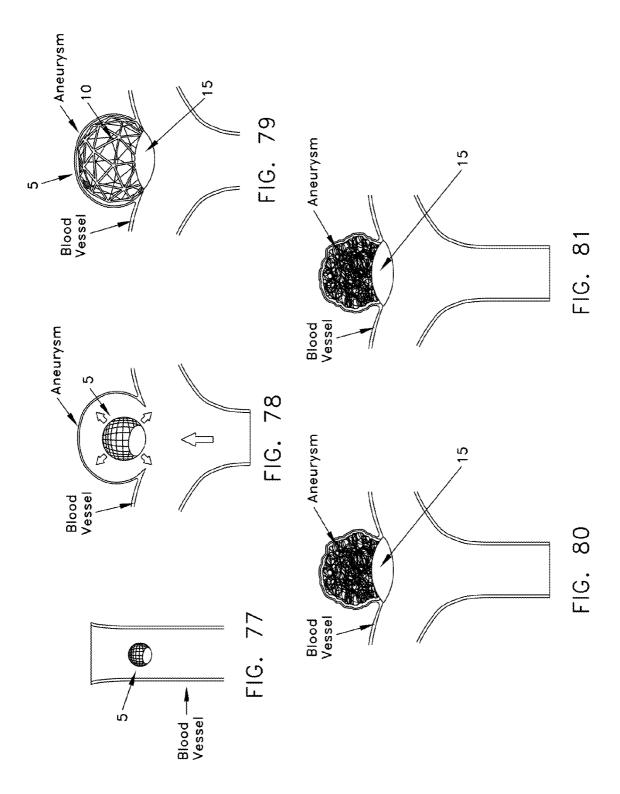


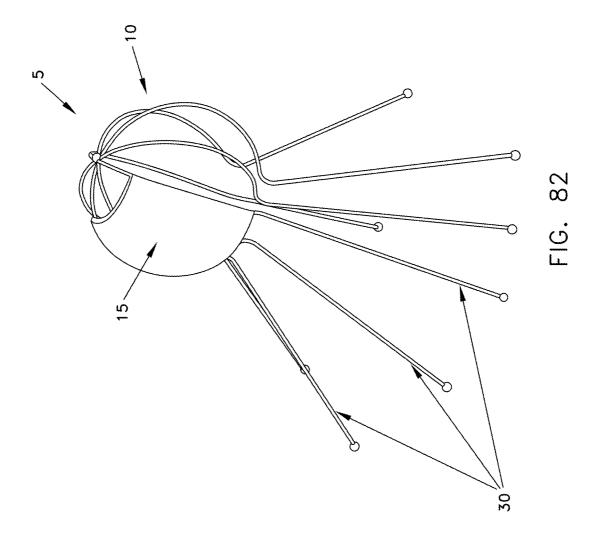


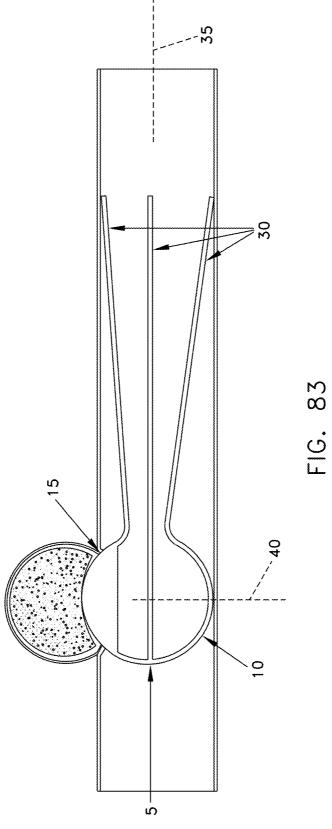


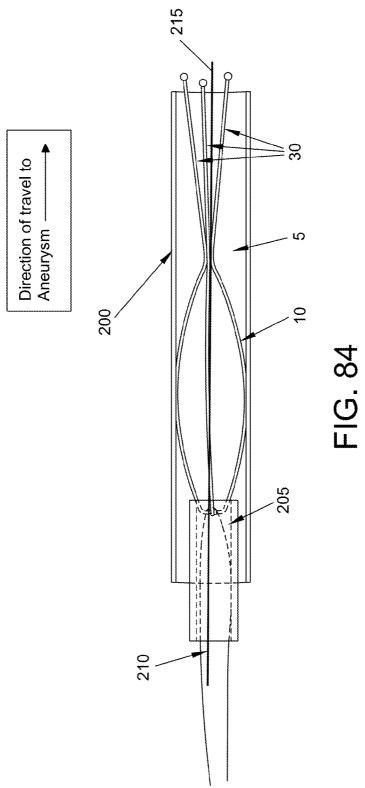


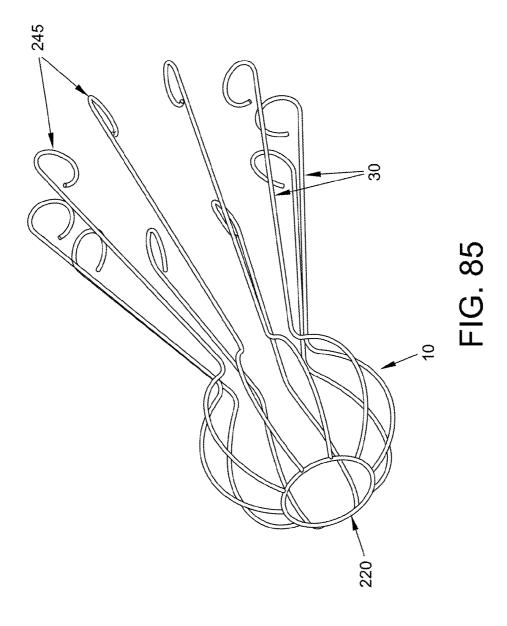


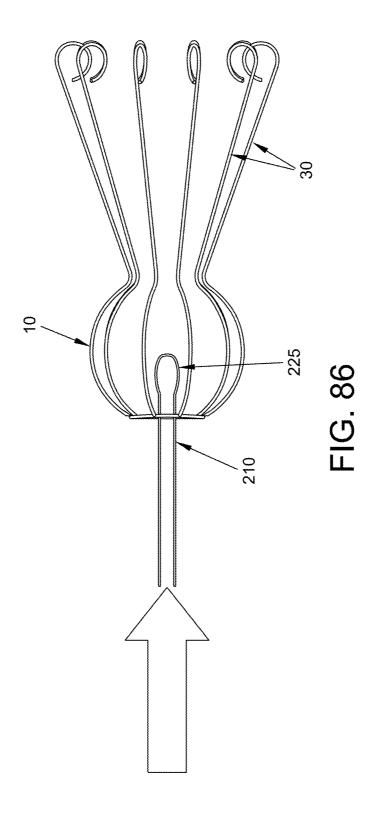


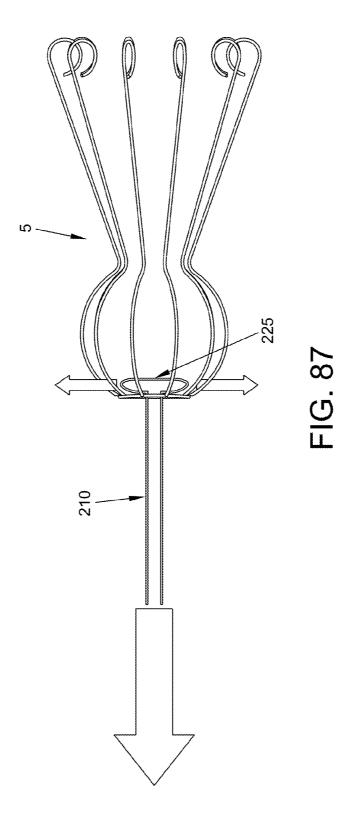


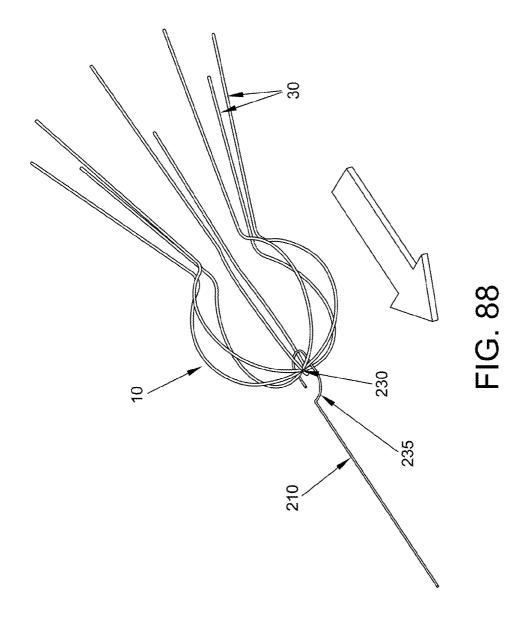


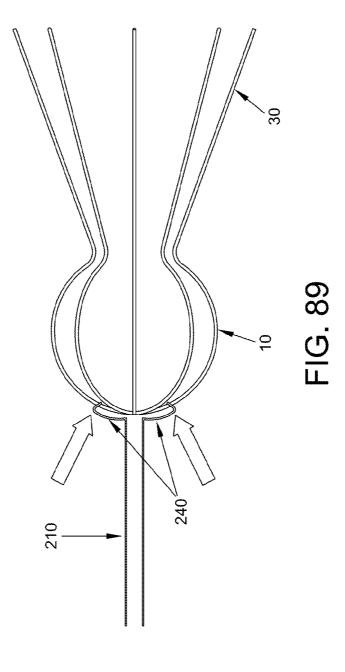

Nov. 8, 2016

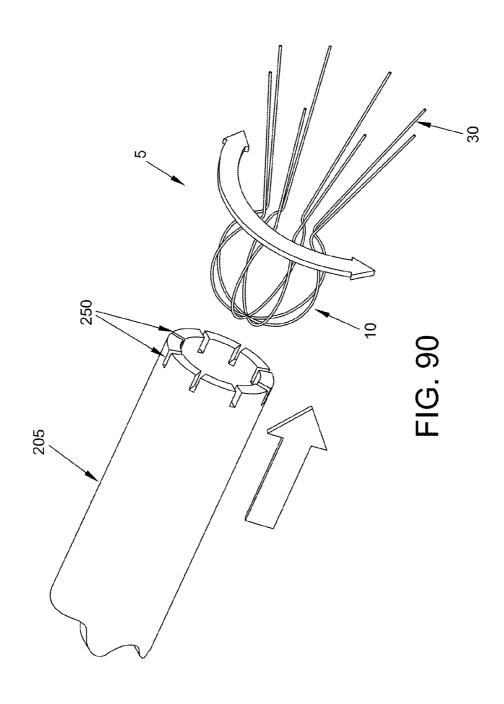


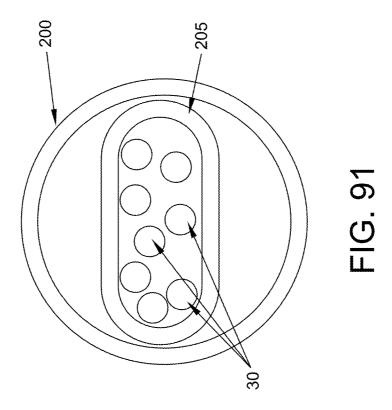


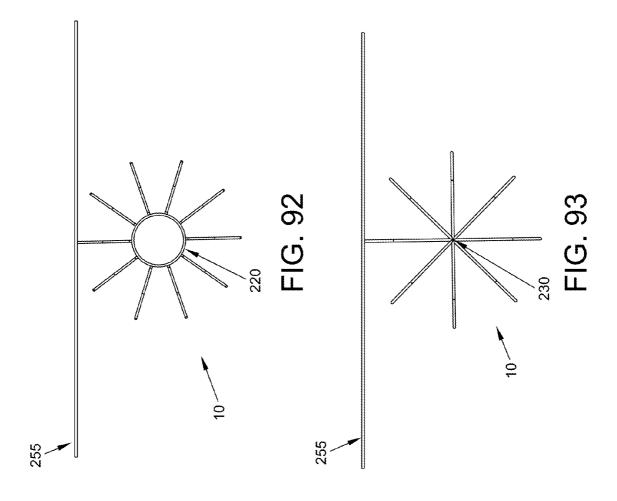


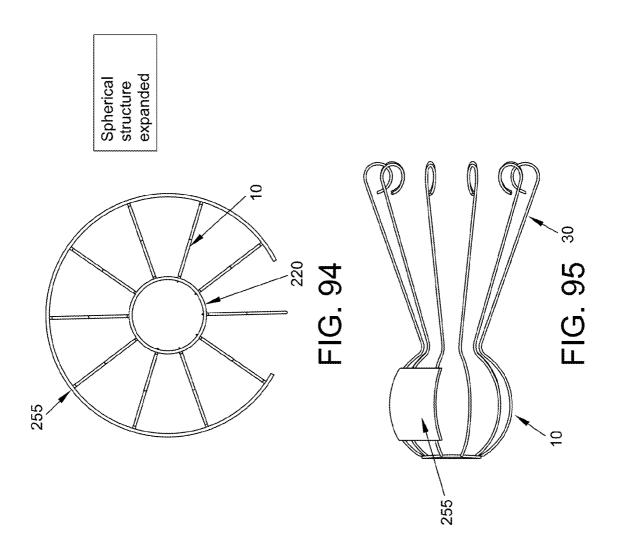


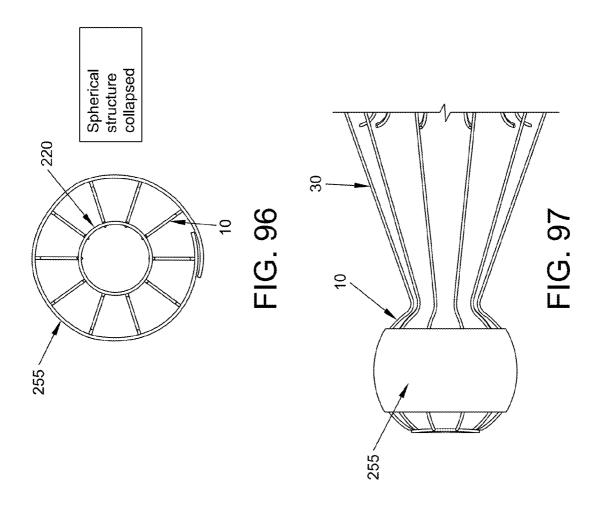


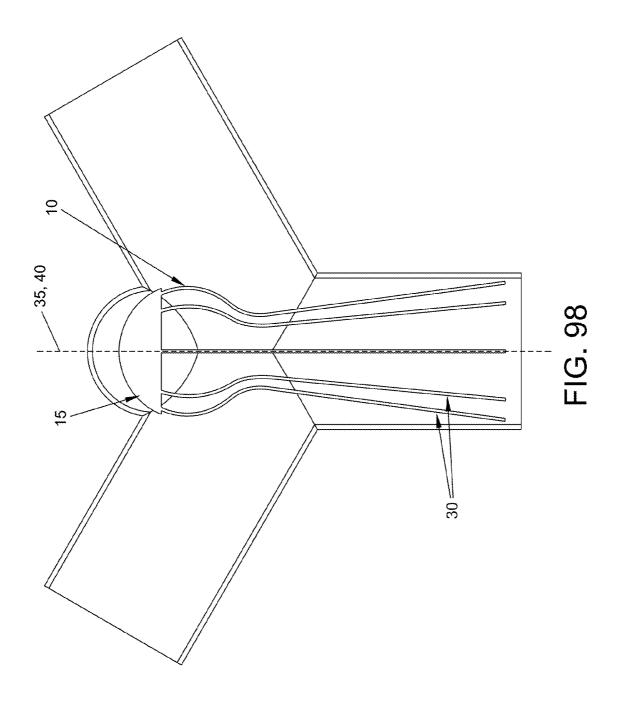


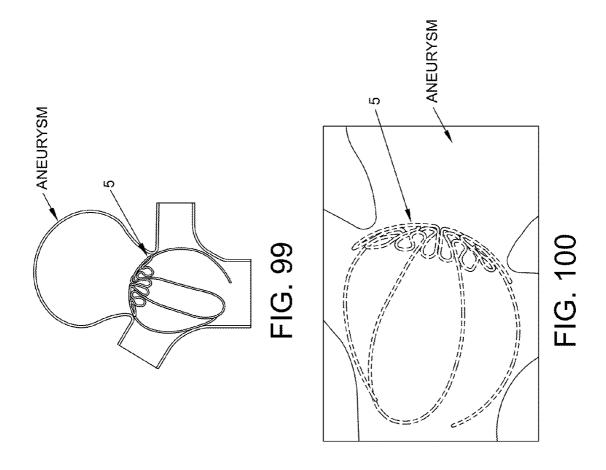


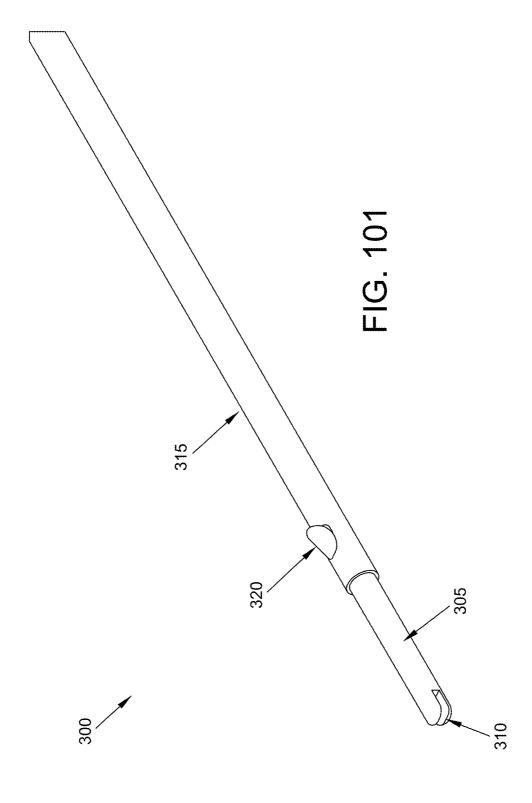


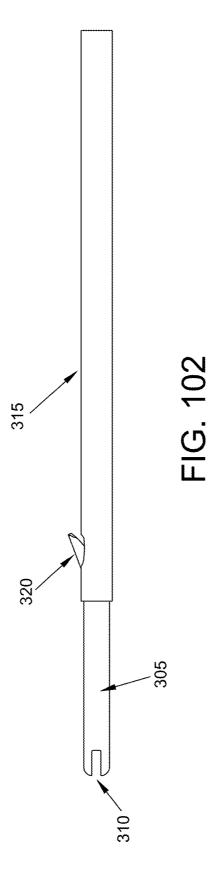


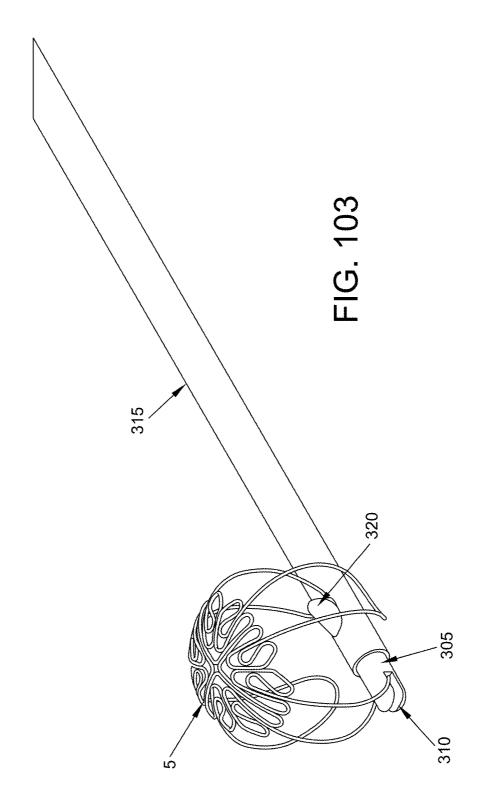


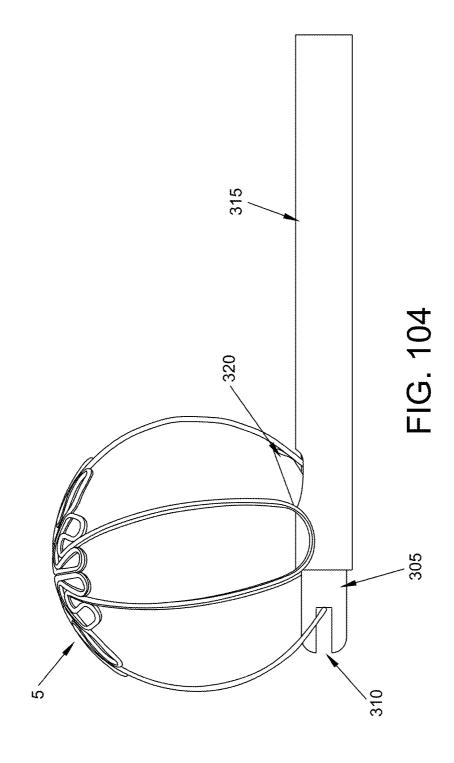


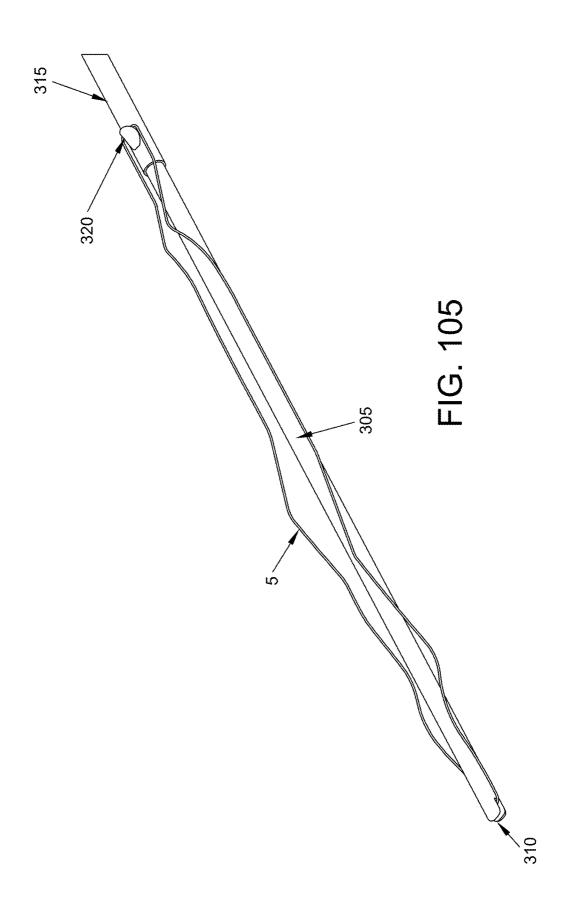


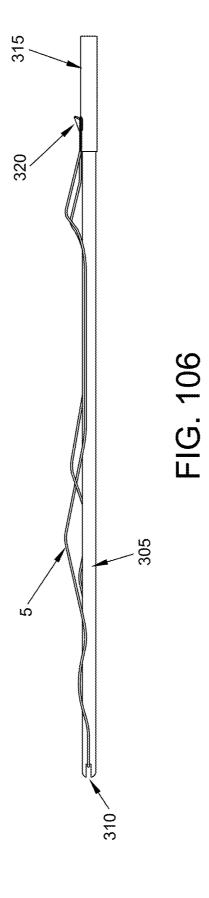


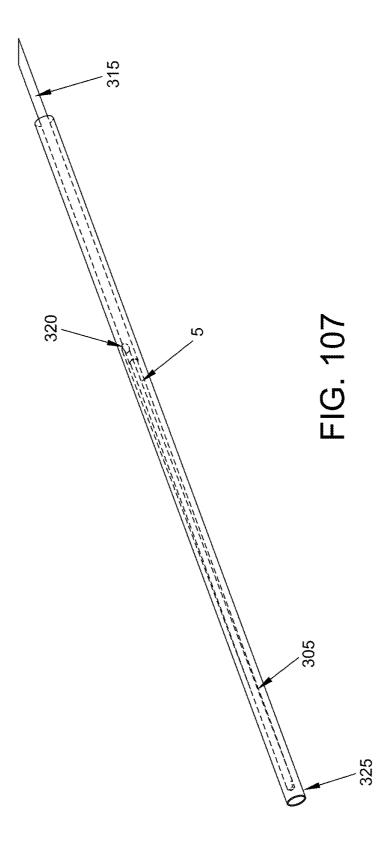


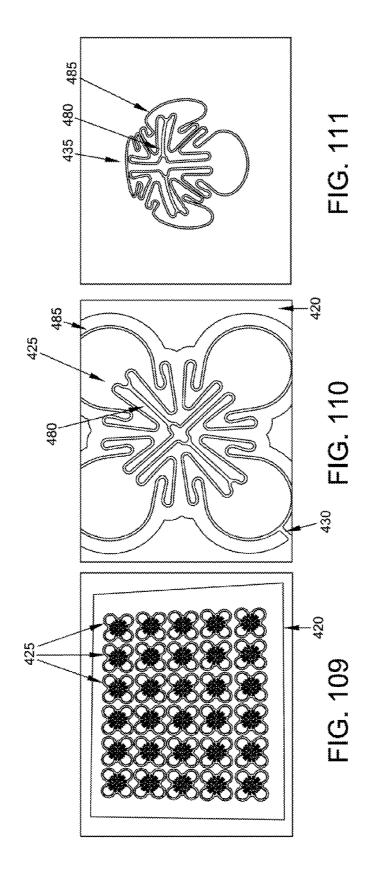


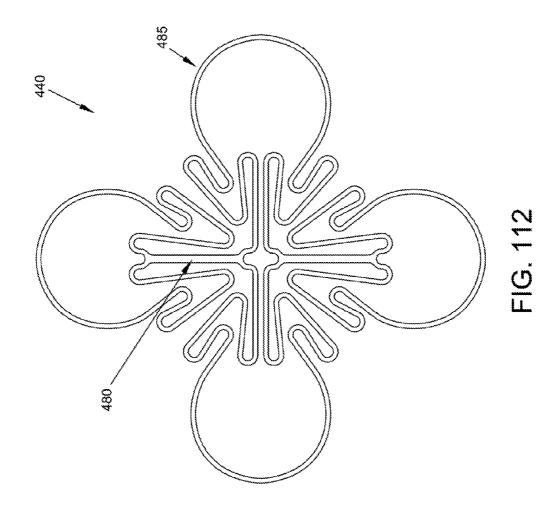


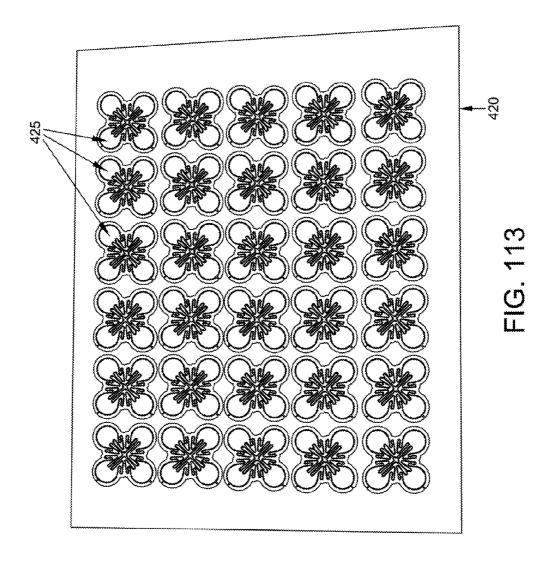




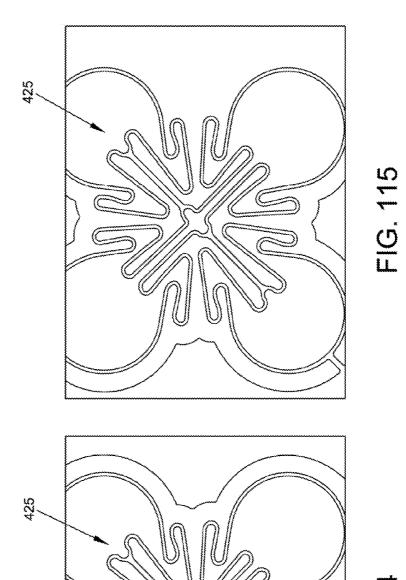
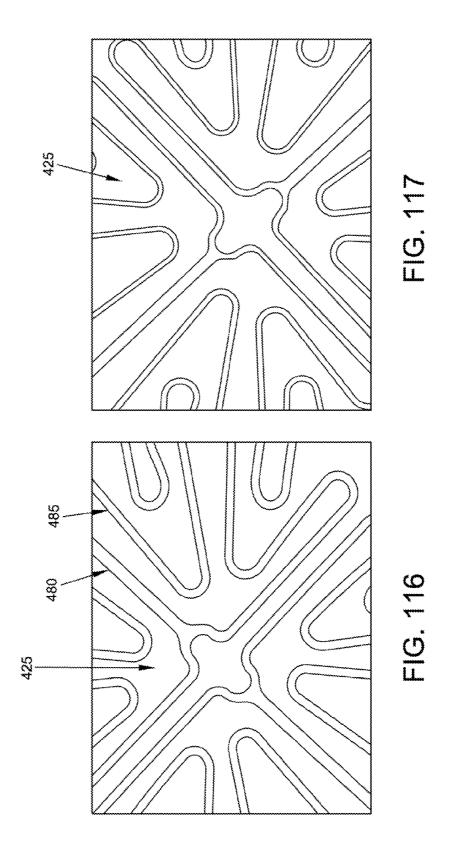
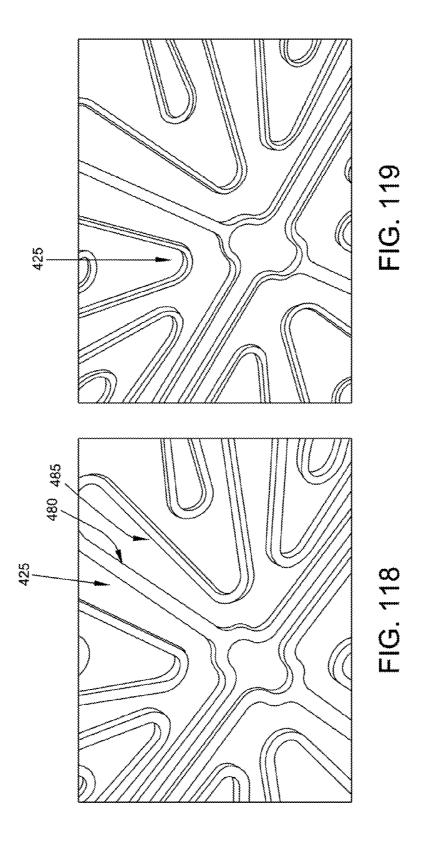
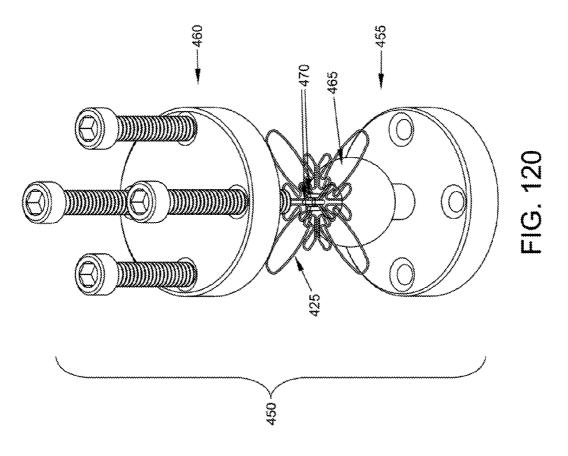
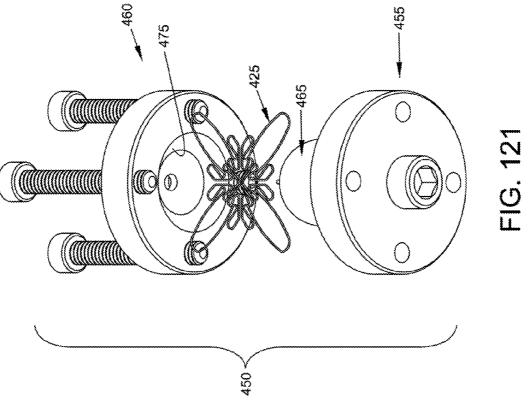


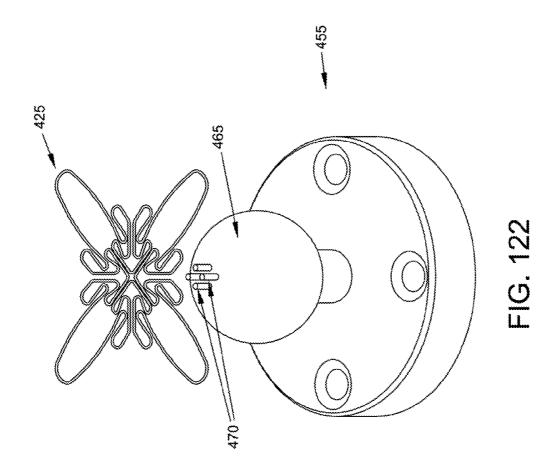


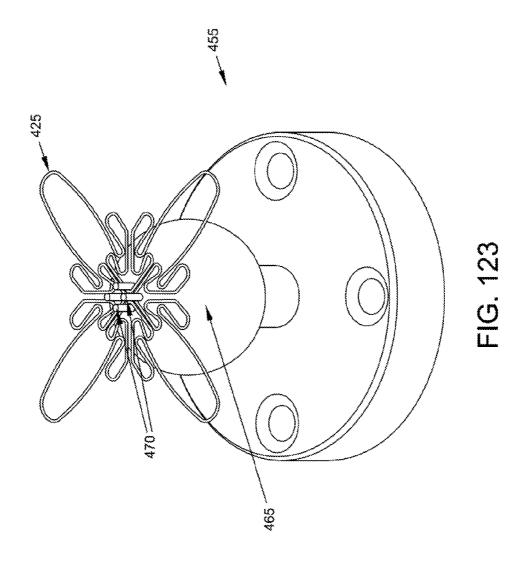


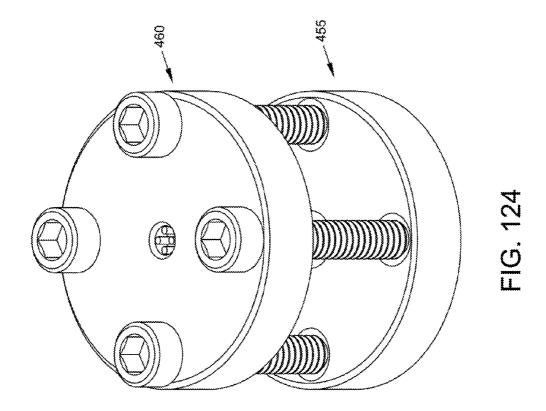


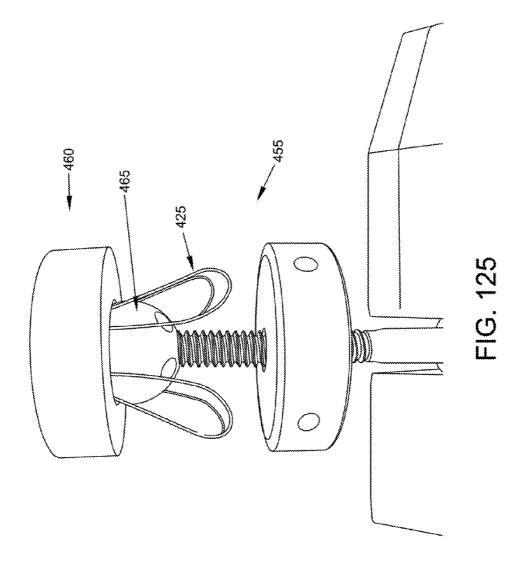
Nov. 8, 2016

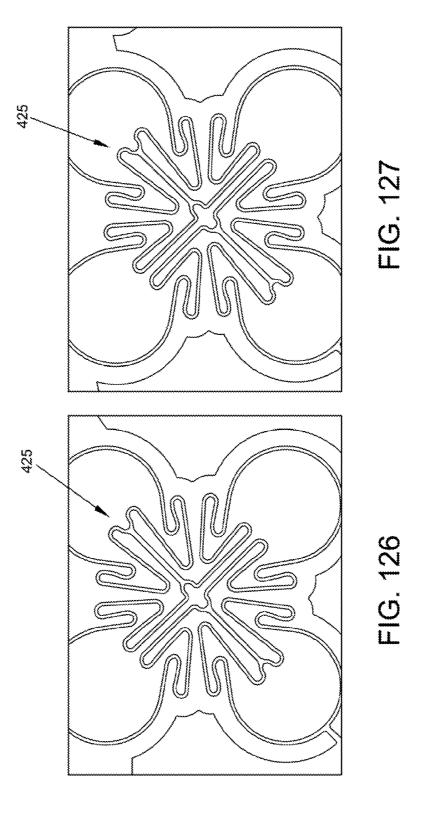






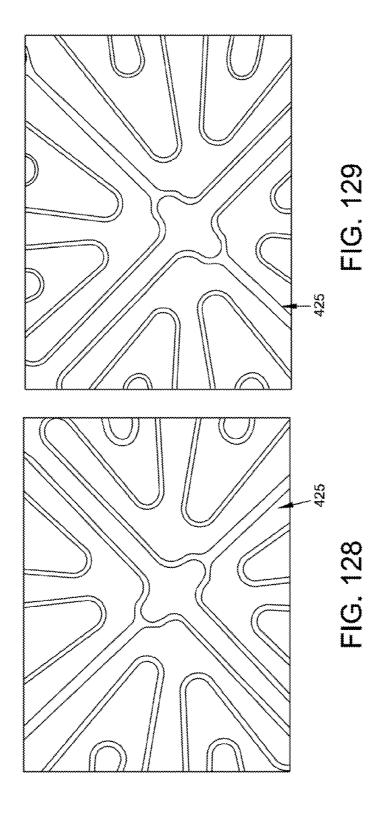

FIG. 114

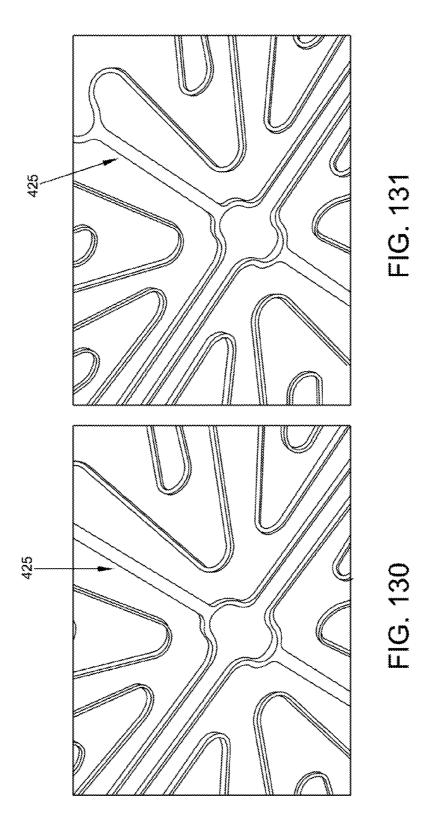









Nov. 8, 2016



METHOD AND APPARATUS FOR
RESTRICTING FLOW THROUGH AN
OPENING IN THE SIDE WALL OF A BODY
LUMEN, AND/OR FOR REINFORCING A
WEAKNESS IN THE SIDE WALL OF A BODY
LUMEN, WHILE STILL MAINTAINING
SUBSTANTIALLY NORMAL FLOW
THROUGH THE BODY LUMEN

REFERENCE TO PRIOR PATENT APPLICATIONS

This patent application is a continuation of pending prior U.S. patent application Ser. No. 13/437,777, filed Apr. 2, 2012 by Howard Riina et al. for METHOD AND APPARATUS FOR RESTRICTING FLOW THROUGH AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE STILL MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN, which

- (i) is a continuation-in-part of prior U.S. patent application Ser. No. 12/657,598, filed Jan. 22, 2010 by Howard Riina et al. for METHOD AND APPARATUS FOR RESTRICTING FLOW THROUGH AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE STILL MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN, which patent application
 - (a) is in turn a continuation-in-part of prior U.S. patent application Ser. No. 12/332,727, filed Dec. 11, 2008 by Howard Riina et al. for METHOD AND APPARATUS FOR SEALING AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN, which in turn claims benefit of prior U.S. Provisional Patent Application Ser. No. 61/007, 189, filed Dec. 11, 2007 by Howard Riina et al. for DEPLOYABLE BLOCKING SPHERE;
 - (b) claims benefit of prior U.S. Provisional Patent Application Ser. No. 61/205,683, filed Jan. 22, 2009 by Jeffrey Milsom et al. for METHOD AND APPARATUS FOR SEALING AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN; and
 - (c) claims benefit of prior U.S. Provisional Patent Application Ser. No. 61/277,415, filed Sep. 24, 2009 by Howard Riina et al. for METHOD AND APPARATUS FOR RESTRICTING AN OPENING IN THE SIDE WALL OF A BODY LUMEN, AND/OR FOR REINFORCING A WEAKNESS IN THE SIDE WALL OF A BODY LUMEN, WHILE MAINTAINING SUBSTANTIALLY NORMAL FLOW THROUGH THE BODY LUMEN; and
- (ii) claims benefit of prior U.S. Provisional Patent Application Ser. No. 61/470,733, filed Apr. 1, 2011 by Howard Riina et al. for FLOW DIVERTERS.

The above-identified patent applications are hereby incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates to medical procedures and apparatus in general, and more particularly to medical procedures

2

and apparatus for restricting flow through an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while still maintaining substantially normal flow through the body lumen.

BACKGROUND OF THE INVENTION

The human body consists of many different anatomical structures. Among these anatomical structures are the blood 10 vessels which circulate blood throughout the body, i.e., the arteries which deliver oxygenated blood to the end tissues and the veins which return oxygen-depleted blood from the end tissues.

In some cases, a blood vessel can become weakened, thereby causing the side wall of the blood vessel to balloon outwardly so as to create an aneurysm. See, for example, FIGS. 1-3, which show various types of aneurysms, e.g., a fusiform aneurysm (FIG. 1), where the aneurysm extends around a substantial portion of the circumference of a blood vessel; a lateral aneurysm (FIG. 2), where the aneurysm extends out of a limited portion of the side wall of a blood vessel, with a well-defined neck; and a bifurcation aneurysm (FIG. 3), where the aneurysm extends out of the apex of a bifurcation of a blood vessel. For purposes of the present invention, all of these aneurysms (e.g., fusiform aneurysms, lateral aneurysms and/or bifurcations aneurysms) are considered to extend out of the side wall of a blood vessel.

Aneurysms can present a serious threat to the patient, since they may enlarge to the point of rupture, thereby resulting in a rapid and uncontrolled loss of blood. Depending upon the size and location of the aneurysm, the aneurysm can be life-threatening.

By way of example but not limitation, an intracranial aneurysm can be fatal if rupture occurs. Given the life35 threatening nature of such intracranial aneurysms, these aneurysms have traditionally been treated with an open craniotomy and microsurgical clipping. This procedure generally involves placing a small titanium clip across the neck of the aneurysm, thus isolating the aneurysm from blood flow and inhibiting subsequent rupture (or re-rupture). This clipping procedure is typically done under direct visualization, using an operating microscope.

More recently, minimally-invasive techniques have also been used to treat both ruptured and un-ruptured brain aneurysms. These minimally-invasive techniques generally employ interventional neuroradiological procedures utilizing digital fluoroscopy. More particularly, these interventional neuroradiological procedures generally use X-ray visualization to allow the surgeon to place a microcatheter within the dome of the aneurysm. With the microcatheter in place, detachable coils are then deployed within the dome of the aneurysm, thereby reducing blood velocity within the dome of the aneurysm and causing thrombosis of the aneurysm so as to prevent subsequent rupture (or re-rupture). However, this coil-depositing procedure has a number of drawbacks, including the risk of coil herniation into the lumen of the blood vessel; the risk of coil migration out of the aneurysm and into the blood vessel, with subsequent downstream migration; the risk of aneurysm rupture; etc.

As a result, a primary object of the present invention is to provide a new and improved device, adapted for minimally-invasive, endoluminal delivery, which may be used to restrict blood flow to an aneurysm while still maintaining substantially normal blood flow through the blood vessel.

Another object of the present invention is to provide an expandable spherical structure, comprising an open frame with a flow-restricting face (i.e., a closed face or a face

having a high strut density), which may be used to restrict flow through an opening in a side wall of a blood vessel while still maintaining substantially normal blood flow through the blood vessel.

Another object of the present invention is to provide an ⁵ expandable spherical structure, comprising an open frame with a flow-restricting face (i.e., a closed face or a face having a high strut density), which may be used to reinforce a weakness in a side wall of a blood vessel while still maintaining substantially normal blood flow through the ¹⁰ blood vessel.

Another object of the present invention is to provide an expandable spherical structure, comprising an open frame with a flow-restricting face (i.e., a closed face or a face having a high strut density), which may be used to restrict flow through an opening in the side wall of a lumen other than a blood vessel, and/or so as to reinforce a weakness in a side wall of a lumen other than a blood vessel, while still maintaining substantially normal flow through the lumen.

Another object of the present invention is to provide an expandable spherical structure which may be used to facilitate the deployment of detachable coils and/or other embolic material into the interior of an aneurysm while still maintaining substantially normal flow through the blood vessel. 25

And another object of the present invention is to provide a method for manufacturing the novel device of the present invention.

SUMMARY OF THE INVENTION

These and other objects of the present invention are addressed through the provision and use of a novel expandable spherical structure, and a method for making the same.

In one form of the invention, there is provided an expandable substantially spherical structure for deployment in a blood vessel or other body lumen, comprising:

an open frame formed out of a closed loop of filament and configured to assume (i) a collapsed configuration in the form of a substantially two-dimensional elongated loop 40 structure so as to facilitate insertion into the blood vessel or other body lumen, and (ii) an expanded configuration in the form of a three-dimensional substantially spherical structure so as to facilitate retention at a site in the blood vessel or other body lumen; and

a flow-restricting face carried by the open frame;

wherein the open frame is configured so as to permit substantially normal flow therethrough when the open frame is in its expanded configuration, and further wherein the flow-restricting face is configured so as to restrict flow 50 therethrough.

In another form of the invention, there is provided a system for restricting flow to an opening in the side wall of a blood vessel or other body lumen and/or reinforcing a weakness in the side wall or apex of a bifurcation of the 55 blood vessel or other body lumen, while maintaining substantially normal flow through the blood vessel or other body lumen, comprising:

an expandable substantially spherical structure for deployment in the blood vessel or other body lumen, com- 60 prising.

an open frame formed out of a closed loop of filament and configured to assume (i) a collapsed configuration in the form of a substantially two-dimensional elongated loop structure so as to facilitate insertion into the blood vessel or other body lumen, and (ii) an expanded configuration in the form of a three-dimensional sub-

4

stantially spherical structure so as to facilitate retention at a site in the blood vessel or other body lumen; and a flow-restricting face carried by the open frame;

wherein the open frame is configured so as to permit substantially normal flow therethrough when the expandable open frame is in its expanded configuration, and further wherein the flow-restricting face is configured so as to restrict flow therethrough; and

an installation tool for carrying the expandable substan-10 tially spherical structure to a deployment site, wherein the installation tool comprises:

an elongated structure having a first mount for seating a first portion of the closed loop and a second mount for seating a second portion of the closed loop, the first mount and the second mount being movable relative to one another between a first position and a second position so that (i) when the first portion of the closed loop is seated in the first mount and the second portion of the closed loop is seated in the second mount and the first mount and second mount are in their first position. the open frame is in its expanded substantially spherical configuration, and (ii) when the first portion of the closed loop is seated in the first mount and the second portion of the closed loop is seated in the second mount and the first mount and second mount are in their second position, the open frame is in its collapsed and elongated configuration.

In another form of the invention, there is provided a method for restricting flow to an opening in the side wall of a body lumen while maintaining substantially normal flow through the body lumen, comprising:

providing an expandable substantially spherical structure for deployment in the body lumen, comprising:

an open frame formed out of a closed loop of filament and configured to assume (i) a collapsed configuration in the form of a substantially two-dimensional elongated loop structure so as to facilitate insertion into the blood vessel or other body lumen, and (ii) an expanded configuration in the form of a three-dimensional substantially spherical structure so as to facilitate retention at a site in the blood vessel or other body lumen; and a flow-restricting face carried by the open frame;

wherein the open frame is configured so as to permit flow therethrough when the open frame is in its expanded configuration, and further wherein the flow-restricting face is configured so as to restrict flow therethrough;

delivering the expandable substantially spherical structure to a therapy site within the body lumen while the open frame is in its collapsed configuration; and

transforming the expandable substantially spherical structure from its collapsed configuration to its expanded configuration so that the expandable substantially spherical structure is securely lodged in the body lumen, with the flow-restricting face of the expandable substantially spherical structure positioned so as to restrict flow to the opening in the side wall of the body lumen and with the open frame permitting flow through the body lumen.

In another form of the invention there is provided an expandable substantially spherical structure for deployment in a blood vessel or other body lumen, comprising:

an open frame configured to assume a collapsed configuration and an expanded configuration;

- a flow-restricting face carried by the open frame; and
- a plurality of stabilizing legs attached to, and extending 65 away from, the open frame;

wherein the open frame and the plurality of stabilizing legs are configured so as to permit substantially normal flow

therethrough when the open frame is in its expanded configuration, and further wherein the flow-restricting face is configured so as to restrict flow therethrough.

In another form of the invention, there is provided a method for restricting flow through an opening in the side 5 wall of a body lumen while maintaining substantially normal flow through the body lumen, comprising:

providing an expandable substantially spherical structure for deployment in the body lumen, comprising:

an open frame configured to assume a collapsed configuration and an expanded configuration;

a flow-restricting face carried by the open frame; and

a plurality of stabilizing legs attached to, and extending away from, the open frame;

wherein the open frame and the plurality of stabilizing 15 legs are configured so as to permit flow therethrough when the open frame is in its expanded configuration, and further wherein the flow-restricting face is configured so as to restrict flow therethrough;

delivering the expandable substantially spherical structure 20 to a therapy site within the body lumen while the open frame is in its collapsed configuration and the plurality of stabilizing legs are in a collapsed configuration; and

transforming the expandable substantially spherical structure from its collapsed configuration to its expanded configuration, and transforming the plurality of stabilizing legs from their collapsed configuration to an expanded configuration, so that the expandable substantially spherical structure is securely lodged in the body lumen, with the flow-restricting face of the expandable substantially spherical 30 structure positioned so as to restrict flow to the opening in the side wall of the body lumen and with the open frame and the plurality of stabilizing legs permitting flow through the body lumen.

In another form of the invention, there is provided a 35 method for making a device for causing thrombosis of an aneurysm, wherein said device comprises a single elastic filament configurable between (i) an elongated, substantially linear configuration, and (ii) a longitudinally-contracted, substantially three-dimensional configuration, said method 40 comprising:

providing a sheet of shape memory material;

producing a single filament, two-dimensional interim structure from said sheet of shape memory material;

mounting said single filament, two-dimensional interim 45 structure to a fixture so that said single filament, two-dimensional interim structure is transformed into said longitudinally-contracted, substantially three-dimensional configuration; and

heat treating said single filament, two-dimensional 50 interim structure while it is mounted to said fixture so as to produce said device in its longitudinally-contracted, substantially three-dimensional configuration.

In another form of the invention, there is provided a device for positioning in a blood vessel adjacent to an 55 aneurysm for causing thrombosis of the aneurysm while maintaining substantially normal flow through the blood vessel, said device comprising:

a single elastic filament configurable between:

(i) an elongated, substantially linear configuration, 60 whereby to facilitate movement along a blood vessel; and

(ii) a longitudinally-contracted, substantially three-dimensional configuration for lodging within the blood vessel, said longitudinally-contracted, substantially three-dimensional configuration providing (a) a face for positioning 65 adjacent the aneurysm, said face comprising a plurality of lengths of said elastic filament in close proximity to one

6

another so as to restrict blood flow to the aneurysm and thereby cause thrombosis of the aneurysm, and (b) a substantially open frame for holding said face adjacent the aneurysm, said substantially open frame configured so as to maintain substantially normal flow through the blood vessel;

wherein said single elastic filament has a width which varies along its length.

In another form of the invention, there is provided a method for making a device for causing thrombosis of an aneurysm, wherein said device comprises a single elastic filament configurable between (i) an elongated, substantially linear configuration, and (ii) a longitudinally-contracted, substantially three-dimensional configuration, said method comprising:

providing a filament of shape memory material;

mounting said filament of shape memory material to a fixture so that said filament is transformed into said longitudinally-contracted, substantially three-dimensional configuration; and

heat treating said filament so as to produce said device in its longitudinally-contracted, substantially three-dimensional configuration.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:

FIGS. 1-3 are schematic views showing various types of aneurysms;

FIGS. **4-8** are schematic views showing a novel expandable spherical structure formed in accordance with the present invention, wherein the expandable spherical structure comprises an open frame with a flow-restricting face (i.e., a closed face in this particular embodiment), and wherein the expandable spherical structure is shown being used to close off a lateral aneurysm in a blood vessel;

FIGS. 9-13 are schematic views showing another novel expandable spherical structure formed in accordance with the present invention, wherein the expandable spherical structure comprises an open frame with a flow-restricting face (i.e., a closed face in this particular embodiment), wherein the open frame is formed out of an absorbable material and the closed face is formed out of a non-absorbable material, and wherein the expandable spherical structure is shown being used to close off a lateral aneurysm in a blood vessel:

FIGS. **14-18** are schematic views showing the expandable spherical structure of FIGS. **4-8** being used to close off a bifurcation aneurysm;

FIGS. 19-23 are schematic views showing the expandable spherical structure of FIGS. 9-13 being used to close off a bifurcation aneurysm;

FIG. 24 is a schematic view showing another novel expandable spherical structure formed in accordance with the present invention, wherein the expandable spherical structure comprises an open frame with a flow-restricting face (i.e., a closed face in this particular embodiment), and wherein the open frame of the expandable spherical structure comprises a plurality of struts arranged in a rectangular pattern;

FIG. 25 is a schematic view showing another novel expandable spherical structure formed in accordance with

the present invention, wherein the open frame comprises a plurality of struts arranged in a hexagonal pattern;

FIG. 26 is a schematic view showing another novel expandable spherical structure formed in accordance with the present invention, wherein the expandable spherical 5 structure comprises an open frame with a flow-restricting face (i.e., a closed face in this particular embodiment), and wherein the open frame of the expandable spherical structure comprises a spherical spiral;

FIG. 27 is a schematic view showing another novel 10 expandable spherical structure formed in accordance with the present invention, wherein the expandable spherical structure comprises an open frame with a flow-restricting face (i.e., a closed face in this particular embodiment), and wherein the open frame of the expandable spherical struc- 15 ture comprises a spherical cage;

FIGS. 28-37 are schematic views showing other novel expandable spherical structures formed in accordance with the present invention, wherein the expandable spherical structures comprise spherical cages:

FIGS. 38-43 are schematic views showing other novel expandable spherical structures formed in accordance with the present invention, wherein the expandable spherical structure comprises an open frame with a flow-restricting face (i.e., a closed face in this particular embodiment), and 25 wherein the flow-restricting face is disposed to one side of the axis of approach;

FIGS. 44 and 45 are schematic views showing the expandable spherical structure of FIG. 27 being deployed with a syringe-type (e.g., an outer sleeve with an internal 30 pusher) installation tool;

FIG. 46 is a schematic view showing the expandable spherical structure of FIG. 27 being deployed with a syringetype installation tool equipped with a gripper mechanism;

FIGS. 47-49 are schematic views showing the expandable 35 spherical structure of FIG. 27 being deployed with a syringetype installation tool equipped with an expansion balloon;

FIGS. 50-54 are schematic views showing another novel expandable spherical structure formed in accordance with structure comprises an open frame with a flow-restricting face (i.e., a face having a high strut density in this particular embodiment), and wherein the expandable spherical structure is shown being used to restrict flow to a lateral aneurysm in a blood vessel;

FIGS. 55-63 are schematic views showing other expandable spherical structures formed in accordance with the present invention, wherein the expandable spherical structures comprise open frames with flow-restricting faces (i.e., faces having high strut densities in these particular embodi- 50

FIGS. **64-66** are schematic views showing the expandable spherical structure of FIGS. 4-8 being deployed within the interior of a lateral aneurysm so as to close off the aneurysm;

FIGS. 67-71 are schematic views showing the expandable 55 spherical structure of FIGS. 9-13 being deployed within the interior of a lateral aneurysm so as to close off the aneurysm;

FIGS. 72-76 are schematic views showing the expandable spherical structure of FIGS. 4-8 being deployed within the interior of a bifurcation aneurysm so as to close off the 60 aneurysm;

FIGS. 77-81 are schematic views showing the expandable spherical structure of FIGS. 9-13 being deployed within the interior of a bifurcation aneurysm so as to close off the

FIGS. 82 and 83 are schematic views showing an expandable spherical structure having stabilizing legs extending

therefrom so as to form a "comet-shaped" structure, with the structure being configured to restrict flow to a lateral aneurvsm in a blood vessel:

FIGS. 84-97 are schematic views showing various constructions for the "comet-shaped" structure of FIGS. 82 and 83, but with the flow-restricting face of the expandable spherical structure being omitted in FIGS. 84-91 for clarity of viewing;

FIG. 98 is a schematic view showing another cometshaped structure, but with this structure being configured to restrict flow to a bifurcation aneurysm;

FIGS. 99 and 100 show an expandable spherical structure restricting flow into a bifurcation aneurysm, where the expandable spherical structure is formed out of a "closed loop" of filament, and where the expandable spherical structure is deployed in the patient so that the face having a high strut density is positioned over the mouth/neck of the aneurysm in order to restrict flow into the aneurysm;

FIGS. 101 and 102 are schematic views of an inserter 20 which may be used with an expandable spherical structure formed out of a "closed loop" of filament;

FIGS. 103-107 are schematic views showing how an expandable spherical structure formed out of a "closed loop" of filament may be deployed using the inserter of FIGS. 101

FIG. 108 is a schematic view showing one preferred method for forming a device in accordance with the present invention; and

FIGS. 109-131 are schematic views showing another preferred method for forming a device in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The Novel Expandable Spherical Structure in General

Looking now at FIGS. 4-8, there is shown a novel the present invention, wherein the expandable spherical 40 expandable spherical structure 5 formed in accordance with the present invention. Expandable spherical structure 5 is adapted for minimally-invasive, endoluminal delivery into a blood vessel or other body lumen, for restricting flow through an opening in the side wall of the blood vessel or other body lumen, and/or for reinforcing a weakness in the side wall of the blood vessel or other body lumen, while still maintaining substantially normal flow through the blood vessel or other body lumen.

Expandable spherical structure 5 generally comprises a spherical body comprising an open frame 10 with a flowrestricting face 15 (i.e., a closed face or a face having a high strut density). Preferably open frame 10 and flow-restricting face 15 together define the entire exterior shape of the spherical body, with open frame 10 making up the majority of the exterior shape of the spherical body.

In one preferred form of the invention, open frame 10 defines approximately 90% of the exterior shape of the spherical body and flow-restricting face 15 defines approximately 10% of the exterior shape of the spherical body. In another preferred form of the invention, open frame 10 defines approximately 80% of the exterior shape of the spherical body and flow-restricting face 15 defines approximately 20% of the exterior shape of the spherical body. In yet another preferred form of the invention, open frame 10 comprises approximately 70% of the exterior shape of the spherical body and flow-restricting face 15 defines approximately 30% of the exterior shape of the spherical body. And

in yet another preferred form of the invention, open frame 10 comprises approximately 60% of the exterior shape of the spherical body and flow-restricting face 15 comprises approximately 40% of the exterior shape of the spherical body.

Expandable spherical structure 5 is constructed so that it may be deployed in a blood vessel or other body lumen, by (i) collapsing the expandable spherical structure into a configuration of reduced dimension, (ii) moving the collapsed structure through the blood vessel or other body 10 lumen to a therapy site, and (iii) expanding the collapsed structure to an enlarged dimension at the therapy site, whereby to secure the expandable spherical structure in the blood vessel or body lumen so that its flow-restricting face 15 is presented to a side wall of the blood vessel or other 15 through the blood vessel or other body lumen (FIGS. 6-8). body lumen, whereby to restrict flow to an aneurysm or other opening in the side wall of the blood vessel or other body lumen, or to otherwise reinforce a weakness in the side wall of the blood vessel or other body lumen, without or other body lumen.

Significantly, by forming expandable spherical structure 5 in the shape of a spherical body, the endoluminal device is readily centered on the neck of an aneurysm or other opening in a body lumen, with flow-restricting face 15 25 projecting into the neck of the aneurysm or other opening in a body lumen and reliably restricting flow into the aneurysm or other opening in a body lumen.

Furthermore, by forming expandable spherical structure 5 so that it can expand at the therapy site and lodge itself in the 30 blood vessel or other body lumen with its flow-restricting face 15 presented to a side wall of the blood vessel or other body lumen, expandable spherical structure 5 is effectively self-sizing, since it can be expanded to the degree necessary to span the blood vessel or other body lumen.

More particularly, expandable spherical structure 5 generally comprises an open frame 10 which has a flow restricting face 15 (i.e., a closed face or a face having a high strut density) carried thereon. Open frame 10 is formed so that it can assume a first, collapsed configuration of reduced 40 dimension (FIG. 4) so as to facilitate moving expandable spherical structure 5 endoluminally through the blood vessel or other body lumen to the therapy site. Open frame 10 is also formed so that it can thereafter be reconfigured to a second, expanded configuration of enlarged dimension 45 (FIGS. 5 and 6), whereby expandable spherical structure 5 can be lodged in the blood vessel or other body lumen at the therapy site, with its flow-restricting face 15 pressed securely against a side wall of the blood vessel or other body lumen. In this position, flow-restricting face 15 of expand- 50 able spherical structure 5 can restrict flow to an aneurysm in the blood vessel (such as the lateral aneurysm shown in FIGS. 4-8, or a bifurcation aneurysm as will hereinafter be discussed below), or restrict flow to an opening in the side wall of the blood vessel or other body lumen, or reinforce a 55 weakness in the side wall of the blood vessel or other body

Significantly, by forming the endoluminal device as an expandable spherical structure, the device can be collapsed to a reduced dimension for minimally-invasive, endoluminal 60 delivery into a blood vessel or other body lumen, yet can thereafter be expanded to the required dimension for secure lodgement at the therapy site, whereby to restrict flow to an opening in a body lumen and/or to reinforce a weakness in the side wall of the body lumen. Furthermore, by forming 65 expandable spherical structure 5 in the shape of a spherical body, the endoluminal device is readily centered on the neck

10

of an aneurysm or other opening in a body lumen, with flow-restricting face 15 projecting into the neck of the aneurysm or other opening in a body lumen and reliably restricting flow into the aneurysm or other opening in a body lumen. And by forming expandable spherical structure 5 so that it can expand at the therapy site and lodge itself in the blood vessel or other body lumen with its flow-restricting face 15 presented to a side wall of the blood vessel or other body lumen, expandable spherical structure 5 is effectively self-sizing, since it expands to the degree necessary to span the blood vessel or other body lumen. Additionally, by forming open frame 10 as an open structure, expandable spherical structure 5 can be disposed in the blood vessel or body lumen without significantly impeding normal flow

Expandable Open Frame 10

As noted above, (i) expandable spherical structure 5 significantly impeding normal flow through the blood vessel 20 generally comprises a spherical body comprising an open frame 10 with a flow-restricting face 15 (i.e., a closed face or a face having a high strut density); (ii) open frame 10 and flow-restricting face 15 together preferably define the entire exterior shape of the spherical body, with open frame 10 making up the majority of the exterior shape of the spherical body; (iii) open frame 10 is capable of being collapsed in dimension for easy delivery of expandable spherical structure 5 to the therapy site and thereafter expanded in dimension at the therapy site so as to hold flow-restricting face 15 against a side wall of a blood vessel or other body lumen; and (iv) open frame 10 is configured so that it does not significantly impede normal flow through the blood vessel or lumen within which it is deployed.

> To this end, open frame 10 is preferably formed with an 35 expandable strut construction, so that it can (i) first assume a configuration of reduced dimension, so that expandable spherical body 5 can move easily through the body to the therapy site, and (ii) thereafter assume a configuration of expanded dimension, so that it can be securely retained at the desired location in the blood vessel or other body lumen and press flow-restricting face 15 securely against the side wall of the blood vessel or body lumen, whereby to restrict flow to an aneurysm or other opening in the blood vessel or other body lumen, or to otherwise reinforce the side wall of the blood vessel or other body lumen. And by forming open frame 10 with an expandable strut construction, open frame 10 is effectively self-sizing, since it expands to the degree necessary to span the blood vessel or other body lumen.

Significantly, by forming open frame 10 with an expandable strut construction, open frame 10 does not significantly impede normal flow through the blood vessel or other body lumen when open frame 10 is in its expanded configuration within the blood vessel or other body lumen.

Thus, for example, in the configuration shown in FIGS. 4-8, open frame 10 comprises a plurality of struts arranged in a polygonal configuration, with the struts being sized so that the struts present minimal obstruction to normal flow through the lumen.

In one preferred construction, open frame 10 may be formed out of a shape memory alloy (SMA) such as Nitinol, and a temperature transition may be used to change the configuration of open frame 10. By way of example but not limitation, open frame 10 can be formed so that when it is cooled to a temperature below body temperature, the open frame assumes a collapsed configuration (FIG. 4), and when it is thereafter warmed to body temperature, the open frame assumes an expanded configuration (FIG. 6). If desired,

open frame 10 can be warmed to body temperature simply by deploying expandable spherical structure 5 in the body. Alternatively, an electrical current may be applied to open frame 10 so as to heat open frame 10 to its expansion temperature, e.g., via resistance heating. Or, a warm or cold saline solution can be flushed through open frame 10 so as to appropriately modulate the temperature of the open frame, whereby to cause the open frame to assume a desired configuration.

Alternatively, open frame 10 can be formed out of a 10 resilient material which can be forcibly compressed into a collapsed configuration, restrained in this collapsed configuration, and thereafter released so that it elastically returns to its expanded configuration. By way of example but not limitation, in this form of the invention, expandable spherical structure 5 might be compressed into a configuration of a reduced dimension, restrained within a sleeve, delivered to the therapy site within the sleeve, and then released from the sleeve so that it elastically returns to an expanded configuration at the therapy site, whereby to lodge itself in the blood 20 vessel or other body lumen, with its flow-restricting face pressed against the side wall of the blood vessel or other body lumen. By way of further example but not limitation, open frame 10 can be formed out of a shape memory alloy (SMA) engineered to form stress-induced martensite (SIM) 25 and thereby exhibit superelastic properties, whereby to permit large shape deformations with elastic return. By way of still further example but not limitation, open frame 10 can be formed out of a suitable polymer which exhibits the desired elastic properties.

In another preferred form of the present invention, open frame 10 is formed with a structure which can be collapsed for delivery to the deployment site and thereafter enlarged to an expanded configuration through the use of an expansion device, e.g., an internal balloon, where the balloon is inflated at the therapy site so as to reconfigure open frame 10 to an expanded condition. This arrangement can be advantageous, since it does not require the open frame to rely on temperature transition or elasticity to expand to its fully expanded configuration (or to any desired expanded configuration less 40 than its fully expanded configuration). Thus, a wide range of well known biocompatible materials (e.g., medical grade stainless steel) may be used to form open frame 10.

Flow-Restricting Face 15

Flow-restricting face **15** is carried by (e.g., mounted on, formed integral with, or otherwise connected to) open frame **10** so that flow-restricting face **15** can be pressed securely against the side wall of the blood vessel or other body lumen 50 within which expandable spherical structure **5** is deployed.

Flow-restricting face 15 may comprise a closed face, in the sense that it comprises a substantially complete surface or barrier which is capable of closing off an aneurysm or other opening in side wall of a blood vessel or other body 55 lumen, and/or for reinforcing a weakness in the side wall of the blood vessel or other body lumen. See FIGS. 4-8, where flow-restricting face 15 is depicted as a closed face.

Alternatively, and as will be discussed in detail below, flow-restricting face 15 may comprise a face having a high 60 strut density which is capable of restricting flow to an aneurysm or other opening in a side wall of a blood vessel or other body lumen, and/or for reinforcing a weakness in the side wall of the blood vessel or other body lumen. In this case, flow-restricting face 15 may not constitute a substantially complete surface, or flow-restricting face 15 may not constitute a substantially fluid-impervious surface, but flow-

12

restricting face 15 will have a strut density sufficiently high to restrict flow through that face, e.g., so as to cause an aneurysm to thrombose.

Flow-restricting face 15 may be formed so as to be substantially rigid or it may be formed so as to be flexible.

Flow-restricting face 15 preferably has the convex configuration shown in FIGS. 4-8, so that it can form a regular portion of the spherical body of expandable structure 5. However it should be appreciated that flow-restricting face 15 may also be formed with a planar configuration, or some other configuration, if desired.

Use of Absorbable Materials

If desired, expandable spherical structure **5** can have some or all of its elements formed out of an absorbable material, so that some or all of the elements are removed from the therapy site after some period of time has elapsed.

By way of example but not limitation, open frame 10 can be formed out of an absorbable material, and flow-restricting face 15 can be formed out of a non-absorbable material, so that only flow-restricting face 15 is retained at the therapy site after some period of time has passed. See FIGS. 9-13. This type of construction can be advantageous where flow-restricting face 15 integrates into the side wall of the blood vessel or other body lumen after some period of time has elapsed, so that a supporting frame is no longer necessary to hold flow-restricting face 15 in position against the side wall of the blood vessel or other body lumen.

It is also possible for the entire expandable spherical structure 5 to be formed out of absorbable material(s), i.e., with both open frame 10 and flow-restricting face 15 being formed out of absorbable materials. This type of construction can be advantageous where flow-restricting face 15 only needs to be held against the side wall of the blood vessel or other body lumen for a limited period of time, e.g., until aneurysm thrombosis/scarring is complete, or to reinforce the side wall of the blood vessel or other body lumen while healing occurs, etc.

It should also be appreciated that, where both open frame 10 and flow-restricting face 15 are absorbable, they may be engineered so as to have different absorption rates, so that they are removed from the therapy site at different times. This may be done by making the various elements out of different materials, or by making the various elements out of different blends of the same materials, etc.

Application to Different Types of Aneurysms

As noted above, expandable spherical structure 5 can be used to restrict flow to various types of aneurysms.

Thus, for example, FIGS. **4-8** and **9-13** show expandable spherical structure **5** being used to restrict flow to a lateral aneurysm (i.e., in these particular embodiments, to close off the lateral aneurysm).

However, it should also be appreciated that expandable spherical structure 5 may be used to restrict flow to a bifurcation aneurysm as well. Thus, for example, FIGS. 14-18 show the expandable spherical structure 5 of FIGS. 4-8 being used restrict flow to a bifurcation aneurysm, and FIGS. 19-23 show the expandable spherical structure 5 of FIGS. 9-13 being used to restrict flow to a bifurcation aneurysm (i.e., in these particular embodiments, to close off the bifurcation aneurysm). In this respect it should be appreciated that the spherical shape of expandable spherical structure 5 is particularly well suited for use in treating bifurcation aneurysms, since it may be seated securely at the

bifurcation, pressing flow-restricting face 15 securely against the bifurcation aneurysm, while still allowing blood to flow substantially unobstructed through the blood vessels.

It is also anticipated that expandable spherical structure 5 may be used to restrict flow to other types of aneurysms as 5 well, e.g., certain forms of fusiform aneurysms. Where expandable spherical structure 5 is to be used to restrict flow to a fusiform aneurysm, flow-restricting face 15 may comprise a significantly enlarged surface area, or flow-restricting face 15 may comprise two or more separated segments 10 disposed about the lateral portions of open frame 10, etc.

Structure of Open Frame 10

It should be appreciated that open frame 10 can be formed 15 with a variety of different configurations without departing from the scope of the present invention.

In one form of the invention, open frame 10 may be formed out of a plurality of struts arranged in a polygonal array. See, for example, FIGS. 4-8, 9-13, 14-18 and 19-23, 20 where open frame 10 is shown formed out of a plurality of struts arranged as triangular polygons. See also FIG. 24, where open frame 10 is formed out of a plurality of struts arranged as rectangular polygons, and FIG. 25, where open frame 10 is formed out of a plurality of struts arranged as 25 hexagons.

It is also possible to form open frame 10 with a non-polygonal structure.

Thus, for example, open frame 10 may be formed with a spherical spiral structure, e.g., such as is shown in FIG. 26, 30 where a spiral strut forms the open frame 10.

FIG. 27 shows an open frame 10 having a spherical cage structure. More particularly, in this construction, open frame 10 comprises a plurality of axially-aligned struts 20 which extend between flow-restricting face 15 and an annular ring 35. Struts 20 preferably bow outwardly when open frame 10 is in its expanded configuration, but may be bent inwardly (e.g., to a straight or inwardly-bowed configuration) or otherwise deformed so as to permit open frame 10 to assume a reduced configuration. By way of example but not limitation, struts 20 may be bent inwardly (e.g., so as to extend substantially parallel to one another) when open frame 10 is in its reduced configuration.

FIGS. 28-37 show other spherical cage constructions wherein various struts 20 form open frame 10.

It will be appreciated that, with the construction shown in FIG. 27. flow-restricting face 15 sits at one end of the plurality of axially-aligned struts 20 and annular ring 25 sits at the opposing end of the plurality of axially-aligned struts **20**. Since struts **20** are intended to be bowed inwardly so that 50 the expandable spherical structure can assume a reduced configuration, the spherical cage structure of FIG. 27 is generally intended to be delivered axially, with flow-restricting face 15 leading. Thus, this construction is particularly well suited for use with bifurcation aneurysms, where the 55 neck of the aneurysm is typically axially-aligned with the direction of approach (see, for example, FIGS. 14-18 and 19-23). Accordingly, where the spherical cage structure is intended to be used with lateral aneurysms, it may be desirable to use the spherical cage configuration shown in 60 FIG. 38, where flow-restricting face 15 is disposed to one side of the axis of approach, i.e., to one side of the axis 27 shown in FIG. 38. In other words, where the spherical cage structure is intended to be used with a bifurcation aneurysm, flow-restricting face 15 is intended to be aligned with the 65 axis of approach, and where the spherical cage structure is intended to be used with a lateral aneurysm, flow-restricting

14

face 15 is intended to be disposed to one side of the axis of approach. In this way, expandable spherical structure 5 can be endoluminally advanced to the therapy site and flow-restricting face 15 properly positioned relative to the anatomy.

FIGS. **39-43** show other spherical cage constructions wherein various struts **20** form open frame **10** and flow-restricting face **15** is disposed to one side of the axis of approach.

Installation Tools

Various installation tools may be provided to deploy expandable spherical structure 5 within a blood vessel or other body lumen.

Thus, for example, in FIG. 44, there is shown a syringetype (e.g., an outer sleeve with an internal pusher) installation tool 100 for deploying the expandable spherical structure 5 shown in FIG. 45. Installation tool 100 generally comprises a hollow sleeve 105 having a lumen 110 therein, and a pusher 115 slidably disposed within lumen 110. Lumen 110 is sized so that it can accommodate expandable spherical structure 5 when the expandable spherical structure is in its reduced configuration (FIG. 44), but not when it is in its enlarged configuration (FIG. 45). As a result of this construction, expandable spherical structure 5 may be positioned within lumen 110 (distal to pusher 115) when expandable spherical structure 5 is in its reduced configuration, advanced to the therapy site while within sleeve 105, and then installed at the therapy site by advancing pusher 115 so that expandable spherical structure 5 is ejected from the interior of sleeve 105. Once expandable spherical structure 5 has been ejected from sleeve 105, expandable spherical structure 5 can return to an expanded configuration (FIG. 45) so as to be securely engaged in the blood vessel or other body lumen in the manner previously described, with flowrestricting face 15 pressed against a side wall of the blood vessel or other body lumen. It will be appreciated that the syringe-type installation tool 100 is particularly advantageous where expandable spherical structure 5 is elastically deformable, such that sleeve 105 can serve to mechanically restrain the expandable spherical structure in its reduced configuration while the expandable spherical structure is within sleeve 105, and release that mechanical constraint when the expandable spherical structure is ejected from

As noted above, expandable spherical structure 5 of FIGS. 27, 44 and 45 is well suited for use with bifurcation aneurysms, where the neck of the aneurysm is typically axially-aligned with the direction of approach (see, for example, FIGS. 14-18 and 19-23). Where the spherical cage structure is intended to be used with lateral aneurysms, it may be desirable to use the spherical cage configuration shown in FIG. 38, where flow-restricting face 15 is disposed to one side of the axis of approach.

If desired, installation tool 100 can be provided with a gripper mechanism to releasably secure expandable spherical structure 5 to installation tool 100, e.g., so as to releasably secure expandable spherical structure 5 to installation tool 100 until after expandable spherical structure 5 has been advanced to the therapy site and has returned to its enlarged configuration, so that it is ready to be left at the therapy site. This gripper mechanism ensures complete control of expandable spherical structure 5 as it is moved out of the installation tool and erected within the body, and also

facilitates more precise positioning (e.g., with proper rotation, etc.) of the expandable structure against the side wall of the body lumen.

More particularly, and looking now at FIG. 46, installation tool 100 may be provided with a plurality of spring 5 grippers 125. Spring grippers 125 are disposed within lumen 110 of sleeve 105, exterior to pusher 115. Each spring gripper 125 is formed so that when a bowed portion 130 of the spring gripper is restrained within lumen 110, a hook portion 135 of that spring gripper holds annular ring 25 of 10 expandable spherical structure 5 to the distal end of pusher 115. However, when pusher 115 is advanced to the point where bowed portion 130 of spring gripper 125 is no longer restrained within lumen 110, hook portion 135 of spring gripper 125 moves outboard so as to release annular ring 25 of expandable spherical structure 5 from the distal end of pusher 115. Thus it will be seen that spring grippers may be used to releasably secure expandable spherical structure 5 to installation tool 100 until after the expandable spherical structure has been advanced out of the distal end of the 20 installation tool and returned to its enlarged configuration. This arrangement can provide the clinician with increased control as expandable spherical structure 5 is deployed within the blood vessel.

As noted above, expandable spherical structure 5 of FIGS. 25 27 and 44-46 is well suited for use with bifurcation aneurysms, where the neck of the aneurysm is typically axiallyaligned with the direction of approach (see, for example, FIGS. 14-18 and 19-23). Where the spherical cage structure is intended to be used with lateral aneurysms, it may be 30 desirable to use the spherical cage configuration shown in FIG. 38, where closed face 15 is disposed to one side of the axis of approach.

If desired, installation tool 100 can be provided with an expansion balloon for expanding the expandable spherical 35 structure from its reduced configuration to its enlarged configuration. More particularly, and looking now at FIGS. 47-49, installation tool 100 may be provided with sleeve 105 and pusher 115 as discussed above. In addition, installation tool 100 may be provided with an expansion balloon 140. 40 Expansion balloon 140 is supported on an inflation rod 145 which is movably disposed within pusher 115. Expansion balloon 140 is (in its deflated condition) disposed internal to open frame 10 of expandable spherical structure 5. As a result of this construction, installation tool 100 may receive 45 expandable spherical structure 5 while the expandable spherical structure is in its reduced configuration, carry the expandable spherical structure to the desired therapy site, position the expandable spherical structure at the desired location, and then expand expansion balloon 140 so as to 50 open the expandable spherical structure to its enlarged configuration. Expansion balloon 140 may then be deflated and withdrawn from the interior of expandable spherical structure 5. It will be appreciated that providing installation tool 100 with an expansion balloon may be advantageous 55 paths, switchback paths, serpentine paths, etc. where expandable spherical structure 5 does not self-erect within the body lumen.

Expandable Spherical Structure Having a Flow-Restricting Face Formed with a High Strut Density

In FIGS. 1-50, flow-restricting face 15 of expandable spherical structure 5 is depicted as a closed face, in the sense that flow-restricting face 15 comprises a substantially com- 65 plete surface or barrier which is capable of closing off (and/or very significantly reducing flow to) an aneurysm or

16

other opening in the side wall of a blood vessel or other body lumen, and/or for reinforcing a weakness in the side wall of the blood vessel or other body lumen. However, it should be appreciated that for many applications, flow-restricting face 15 need not comprise a substantially complete surface or barrier, i.e., flow-restricting face 15 may be formed with a face having a sufficiently high strut density to form an effectively closed face or to otherwise achieve a desired purpose. Thus, for example, in FIGS. 50-54, there is shown an expandable spherical structure 5 comprising an open frame 10 having a flow-restricting face 15 formed with a high strut density such that blood flow to the aneurysm will be restricted and the aneurysm will thrombose. In this circumstance, flow-restricting face 15 may be considered to be effectively closed. Furthermore, where flow-restricting face 15 is being used to reinforce a weakness in a side wall (as opposed to being used to restrict flow to an opening in a side wall), closed face 15 may have a somewhat lower strut density, since it does not need to significantly restrict the flow of a fluid.

FIGS. 55-63 show other expandable spherical structures 5 wherein flow-restricting face 15 is formed with a sufficiently high strut density to achieve a desired purpose. In this respect it will be appreciated that, as used herein, the term strut is intended to mean substantially any element spaced from an adjacent element or in contact with an adjacent element. Thus, where flow-restricting face 15 is formed by a face having a high strut density, the struts may be in the form of a screen, a mesh, a lattice, a series of parallel or concentric interlaced or otherwise patterned struts, etc.

It should also be appreciated that it is possible to form the entire expandable spherical structure 5 out of a single superelastic wire, e.g., a shape memory alloy constructed so as to form stress-induced martensite at body temperatures. By way of example but not limitation, an appropriately blended and treated Nitinol wire may be used. In this form of the invention, the expandable spherical structure 5 can be (i) deformed into a collapsed configuration wherein a single path of the wire is constrained within a restraining cannula, and (ii) thereafter reformed in situ by simply pushing the wire out of the distal end of the restraining cannula, whereupon expandable spherical structure 5 reforms in the blood vessel or other body lumen. This form of the invention is particularly well suited to constructions where flow-restricting face 15 is formed with a single, patterned strut arranged to have a high strut density, e.g., with a strut density sufficiently high to restrict flow to the mouth of an aneurysm, and/or a strut density sufficiently high to reinforce the side wall of a blood vessel or other body lumen, and/or a strut density sufficiently high to achieve some other desired purpose. See, for example, FIGS. 59-63, which show flowrestricting face 15 formed out of a single, patterned strut, where the strut pattern may comprise one or more of a variety of configurations, e.g., with parallel paths, concentric

Utilizing the Expandable Spherical Structure in Conjunction with Thrombosis-Inducing Coils

As noted above, conventional minimally-invasive techniques for treating brain aneurysms generally involve depositing thrombosis-inducing coils within the dome of the aneurysm. If desired, the expandable spherical structure 5 of the present invention may be used in conjunction with thrombosis-inducing coils, i.e., the thrombosis-inducing coils may be deposited within the dome of an aneurysm after positioning the expandable spherical structure against the

mouth of the aneurysm so as to restrict flow into the aneurysm, i.e., by introducing the thrombosis-inducing coils through the face having a high strut density and into the dome of the aneurysm. Alternatively, the thrombosis-inducing coils may be deposited within the dome of the aneurysm before positioning the expandable spherical structure against the mouth of the aneurysm so as to restrict flow into the aneurysm. Significantly, it is believed that this approach will both facilitate thrombosis formation and also prevent coil migration out of the aneurysm.

Deploying the Expandable Spherical Structure within an Aneurysm

It should also be appreciated that expandable spherical structure **5** may be deployed within the body of an aneurysm so that its flow-restricting face **15** confronts the lumen, rather than being within the lumen so that its flow-restricting face confronts the body of the aneurysm. See, for example, FIGS. **64-66**, which show the expandable spherical structure **5** of FIGS. **4-8** deployed within the body of the aneurysm. See also, for example, FIGS. **67-71**, which show the expandable spherical structure **5** of FIGS. **9-13** being disposed within the body of the aneurysm.

Again, the expandable spherical structure 5 may be positioned within the interior of a lateral aneurysm (FIGS. **64-66** and **67-71**) or it may be disposed within a bifurcated aneurysm (FIGS. **72-76** and **77-81**).

Expandable Spherical Structure with Stabilizing Legs—"Comet-Shaped Structure"

It is also possible to provide expandable spherical structure **5** with stabilizing legs. Such a construction may be 35 adapted for use with both lateral aneurysms and with bifurcation aneurysms.

More particularly, and looking now at FIGS. 82 and 83, there is shown an expandable spherical structure 5 which comprises an open frame 10 with a flow-restricting face 15. 40 Extending out of open frame 10 are one or more stabilizing legs 30. Stabilizing legs 30 are formed so that, when flow-restricting face 15 is positioned against the side wall of a blood vessel or other body lumen, stabilizing legs 30 extend endoluminally through the blood vessel or other body lumen. Thus it will be appreciated that the expandable spherical structure 5 shown in FIGS. 82 and 83 is generally intended to be used with a lateral aneurysm, since the center axis 35 of stabilizing legs 30 is set at a right angle to the center axis 40 of flow-restricting face 15 (see FIG. 83).

Preferably, and as seen in FIGS. 82 and 83, stabilizing legs 30 together form a somewhat cone-shaped structure, so that the overall shape of open frame 10 (with flow-restricting face 15) and stabilizing legs 30 is a generally comet-shaped structure.

As seen in FIG. **84**, this comet-shaped structure may be compressed within a containment sheath **200**, with stabilizing legs **30** leading and with open frame **10** (with flow-restricting face **15**) trailing, and with a push catheter **205** and tension wire **210** engaging open frame **10** of expandable 60 spherical structure **5**. At the aneurysm site, push catheter **205** ejects the comet-shaped structure, "legs first", so that closed face **15** restricts access to the mouth of the aneurysm while stabilizing legs **30** help maintain the position of open frame **10** (and flow-restricting face **15**) within the blood vessel. 65 This deployment procedure is preferably conducted over a guidewire **215**.

18

If the comet-shaped structure subsequently needs to be repositioned or removed from a deployment site, tension wire 210 may be used to pull the comet-shaped structure retrograde, e.g., within the blood vessel or all the way back into containment sheath 200. To this end, and looking now at FIGS. 85-87, open frame 10 of expandable spherical structure 5 may comprise a proximal end ring 220, and tension wire 210 may comprise an expandable head 225 adapted to extend through proximal end ring 220 and then expand, whereupon the comet-shaped structure may be moved retrograde. Alternatively, open frame 10 of expandable spherical structure 5 may comprise an apex 230 of converging wires which can be gripped by a J-hook 235 formed on the distal end of tension wire 210 (FIG. 88) or by C-fingers 240 formed on the distal end of tension wire 210 (FIG. 89).

If desired, and looking now at FIGS. **85-87**, the distal ends of stabilizing legs **30** may be turned into eyelets **245**, so as to minimize trauma (during both placement and repositioning) to the side wall of the body lumen (e.g., blood vessel) in which they are disposed.

It will be appreciated that, where flow-restricting face 15 covers only a portion of the circumference of open frame 10, it can be important for the clinician to ensure the rotational disposition of the comet-shaped structure so that flowrestricting face 15 is properly aligned with the mouth of the lateral aneurysm. For this reason, and looking now at FIG. 90, push catheter 205 may include a plurality of slits 250 on its distal end which receive the constituent wires of open frame 10, whereby to permit the clinician to adjust the rotational disposition of the comet-shaped structure (and hence the rotational disposition of flow-restricting face 15 of open frame 10). Alternatively, and looking now at FIG. 91, push catheter 205 may be formed with an obround shape (or any other appropriate non-circular shape) so as to permit the clinician to specify the rotational disposition of the cometshaped structure (and hence the rotational disposition of flow-restricting face 15 of open frame 10).

Looking now at FIGS. 92 and 93, flow-restricting face 15 of open frame 10 can be formed by wrapping a membrane 255 over the wire skeleton making up open frame 10 and securing it in position. Thus, FIGS. 94 and 95 show membrane 255 covering only a portion of the circumference of frame 10, and FIGS. 96 and 97 show membrane 255 covering the complete circumference of frame 10.

In the foregoing description, the expandable spherical structure 5 of FIGS. 82 and 83 is discussed in the context of a "legs-first" deployment into the blood vessel or other body lumen. However, it should also be appreciated that the expandable spherical structure 5 of FIGS. 82 and 83 may be deployed "head-first" into the blood vessel or other body lumen (i.e., with stabilizing legs 30 trailing open frame 10).

Looking next at FIG. 98, it is also possible to provide a comet-shaped structure which can be used with a bifurcation aneurysm. More particularly, in this form of the invention, expandable spherical structure 5 is formed so that center axis 40 of flow-restricting face 15 is aligned with center axis 35 of stabilizing legs 30. It will be appreciated that where the comet-shaped structure is to be used with to treat a bifurcation aneurysm, it is generally desirable that the "head" of the comet (which comprises flow-restricting face 15) be ejected out of containment sheath 200 first, with stabilizing legs 30 trailing, whereby to easily place flow-restricting face 15 against the mouth of the aneurysm.

Expandable Spherical Structure Formed Out of a "Closed Loop" of Filament

In the preceding description, expandable spherical structure **5** is described as comprising an open frame **10** having

a flow-restricting face 15 carried thereon. More particularly, in some embodiments of the invention, flow-restricting face 15 comprises a substantially complete surface or barrier. See, for example, FIGS. 4-49. However, in other embodiments of the invention, flow-restricting face 15 need not 5 comprise a substantially complete surface or barrier, i.e., flow-restricting face 15 may be formed with a face having a sufficiently high strut density to form an effectively closed face or to otherwise achieve a desired purpose. Thus, for example, in FIGS. 50-58, there is shown an expandable spherical structure 5 comprising an open frame 10 having a flow-restricting face 15 formed with a high strut density such that blood flow to the aneurysm will be restricted and the aneurysm will thrombose. In this circumstance, flowrestricting face 15 may be considered to be effectively 15 closed, in the sense that flow-restricting face 15 is sufficiently closed to decrease flow velocity in the aneurysm and result in thrombosis within the aneurysm. Furthermore, where flow-restricting face 15 is being used to reinforce a weakness in a side wall (as opposed to being used to close 20 off an opening in a side wall or to otherwise restrict flow through that opening), flow-restricting face 15 may have a somewhat lower strut density. In any case, however, flowrestricting face 15 will still have a significantly higher strut density than that of open frame 10.

In the preceding description, it was noted that it is possible to form the entire expandable spherical structure 5 out of a single superelastic wire, e.g., a shape-memory alloy constructed so as to form stress-induced martensite at body temperatures. It was also noted that, in this form of the 30 invention, the expandable spherical structure 5 can be (i) deformed into a collapsed configuration wherein a single path of the wire is constrained within a constraining cannula, and (ii) thereafter reformed in situ by simply pushing the wire out of the distal end of the restraining cannula, where- 35 upon expandable spherical structure 5 reforms in the blood vessel or other body lumen. It was further noted that this form of the invention is particularly well suited to constructions wherein closed face 15 is formed with a single, patterned strut arranged to have a high strut density, e.g., 40 with a strut density sufficiently high to restrict the flow of blood through the mouth of an aneurysm (i.e., to cause thrombosis of the aneurysm), and/or a strut density sufficiently high to reinforce the side wall of a blood vessel or other body lumen, and/or a strut density sufficiently high to 45 achieve some other desired purpose. Again, however, flowrestricting face 15 will still have a significantly higher strut density than that of open frame 10. See, for example, FIGS. 59-63, which show flow-restricting face 15 formed out of a single, patterned strut, where the strut pattern may comprise 50 one or more of a variety of configurations, e.g., with parallel paths, concentric paths, switchback patterns, serpentine

In accordance with the present invention, there is now disclosed a further construction wherein expandable spherical structure 5 is formed out of a closed loop of filament such as highly flexible wire (e.g., Nitinol) which has been worked (e.g., on a mandrel) so that its numerous turns approximate the shape of a sphere or ellipsoid when the loop is in its relaxed condition. One face of the sphere (i.e., flow-restricting face 15) has a higher turn density than the remainder of the sphere (i.e., open frame 10) so that the high density face can restrict blood flow while the remainder of the sphere easily passes blood flow. The closed loop of filament may be transformed from its spherical shape into another shape by applying physical forces (e.g., tension) to the closed loop of filament. Thus, the closed loop of filament may be trans-

20

formed from its three-dimensional substantially spherical configuration into a substantially two-dimensional "elongated loop" configuration (e.g., by applying two opposing forces to the interior of the loop) in order that the closed loop of filament may be advanced endoluminally to the site of an aneurysm. Once at the site of the aneurysm, the tension on the elongated loop may be released so that the closed loop of filament returns to its spherical shape, whereby to lodge in the blood vessel with the high density face (i.e., flowrestricting face 15) diverting the flow of blood away from the aneurysm (i.e., to cause thrombosis within the aneurysm) while the remainder of the sphere (i.e., open frame 10) easily passes blood flowing through the parent vessel. If the sphere subsequently needs to be re-positioned within the blood vessel, the tension is re-applied to the sphere so as to transform it part or all the way back to its elongated loop configuration, the position of the device is adjusted, and then the foregoing process repeated so as to set the sphere at a new position within the blood vessel. Furthermore, if the sphere needs to be removed from the blood vessel, the tension is re-applied to the sphere so as to transform it back to its elongated loop configuration, and then the loop is removed from the patient. Significantly, this construction has the advantages of (i) ease of positioning, (ii) reliably maintaining its deployed position within the vessel, (iii) ease of re-positioning within the body, and (iv) where necessary, removal from the body.

By way of example but not limitation, FIG. 63 shows a expandable spherical structure 5 which is formed out of a closed loop of highly flexible wire. As can be seen in FIG. 63, expandable spherical structure 5 approximates the shape of a sphere or ellipsoid when the loop is in its relaxed condition. FIG. 63 shows expandable spherical structure 5 being used to restrict blood flow to a lateral aneurysm. FIGS. 99 and 100 show expandable spherical structure 5 being used to restrict blood flow to a bifurcation aneurysm.

FIGS. 101 and 102 shows an inserter 300 which can be used to reconfigure such a "closed loop" expandable spherical structure 5 from its relaxed spherical (or elliptical) configuration into an elongated loop configuration. To this end, inserter 300 preferably comprises an inner catheter 305 which includes a bifurcated distal end 310 which can seat a segment of the closed loop. Inserter 300 preferably also comprises an outer catheter 315 which includes a mount 320 which can seat another segment of the closed loop.

In use, and as shown in FIGS. 103-107, inserter 300 is set so that its outer catheter 315 is adjacent to bifurcated distal end 310, and then a segment of the closed loop expandable spherical structure 5 is seated in bifurcated distal end 310 and another segment of the closed loop expandable spherical structure is seated in mount 320 of outer catheter 315. Then outer catheter 315 is moved proximally so that the closed loop expandable spherical structure 5 is reconfigured from its relaxed spherical (or elliptical) configuration into an elongated loop configuration, e.g., in the manner of a tensioned elastic band. With the closed loop expandable spherical structure 5 held in this elongated condition on inserter 300, a transport sheath 325 is (optionally) be placed over the assembly. Inserter 300 (with its passenger closed loop expandable spherical structure 5 and with its overlying transport sheath 325) is moved through the patient's anatomy until spherical structure 5 is located at the surgical site. Then transport sheath 325 is removed and outer catheter 315 is moved distally on inner catheter 305. As outer catheter 315 is moved distally on inner catheter 305, tension on expandable spherical structure 5 is released so that expandable spherical structure 5 can re-assume its spherical

or elliptical shape and engage the adjacent anatomy. Then expandable spherical structure 5 is disengaged from inserter 300, and inserter 300 is removed from the surgical site.

If, after deployment, the closed loop expandable spherical structure needs to be re-positioned within the blood vessel, inserter 300 is used to re-apply tension to the sphere so as to transform the sphere part or all the way back to its loop configuration, the position of the device is adjusted, and then the foregoing process is repeated so as to set the sphere at a new position within the blood vessel.

Furthermore, if, after deployment, the closed loop expandable spherical structure 5 needs to be removed from the blood vessel, inserter 300 is used to re-apply tension to the sphere so as to transform it back to its loop configuration, and then the loop is removed from the patient.

Significantly, this construction has the advantages of (i) ease of positioning, (ii) reliably maintaining its deployed position within the vessel, (iii) ease of re-positioning within the body, and (iv) where necessary, removal from the body.

TERMINOLOGY

In the foregoing disclosure, expandable spherical structure 5 is described as comprising a spherical body. In this regard, it should be appreciated that the term "spherical" is 25 intended to mean a true spherical shape, and/or a substantially spherical shape, and/or a near spherical shape (including but not limited to an ellipsoid shape or a substantially ellipsoid shape or a near ellipsoid shape), and/or an effectively spherical shape, and/or a generally spherical shape, and/or a polyhedron which approximates a sphere, and/or a structure comprising a substantial portion of any of the foregoing, and/or a structure comprising a combination of any of the foregoing, etc.

Thus, for example, expandable spherical structure 5 may include a first section that constitutes a portion of a sphere and a second section which roughly approximates the remaining portion of a sphere.

Method for Manufacturing the Novel Device from a Single Elastic Filament

In the foregoing disclosure, there is disclosed a novel device for, among other things, positioning in a blood vessel 45 (or vessels) adjacent to the mouth of an aneurysm and for causing thrombosis of the aneurysm by restricting blood flow to the aneurysm while maintaining substantially normal blood flow through the blood vessel (or vessels) which receive(s) the device, wherein the device comprises a single 50 elastic filament configurable between: (i) a longitudinallyexpanded, substantially linear configuration, whereby to facilitate movement of the device along the vascular system of the patient to the site of the aneurysm; and (ii) a longitudinally-contracted, substantially three-dimensional 55 configuration for lodging within the central lumen of the blood vessel (or vessels) adjacent to the mouth of the aneurysm, the longitudinally-contracted, substantially threedimensional configuration providing (a) a flow-restricting face for positioning at the mouth of the aneurysm, the 60 flow-restricting face comprising a plurality of lengths of the single elastic filament disposed in close proximity to one another so as to significantly restrict blood flow to the aneurysm and thereby cause thrombosis of the aneurysm, and (b) a substantially open frame for holding the flow- 65 restricting face adjacent to the mouth of the aneurysm, the substantially open frame being configured so as to maintain

22

substantially normal blood flow through the central lumen of the blood vessel (or vessels) which receive(s) the device.

In one preferred form of the present invention, the novel device is formed out of a single elastic filament having distinct first and second ends, and the longitudinally-expanded, substantially linear configuration is formed by disposing the first and second ends oppositely away from one another. In another preferred form of the present invention, the device is formed out of a single elastic filament having its first and second ends unified with one another (e.g., by welding, by banding, etc.) so as to effectively form a continuous, closed loop of elastic filament, and the longitudinally-expanded, substantially linear configuration is formed by disposing the continuous, closed loop of elastic filament so that it essentially consists of two parallel lengths of the single elastic filament.

And in one preferred form of the present invention, the longitudinally-contracted, substantially three-dimensional configuration is substantially spherical, or substantially ellipsoid, or some other three-dimensional shape appropriate for holding the flow-restricting face of the device against the mouth of the aneurysm while maintaining substantially normal blood flow through the central lumen of the blood vessel (or vessels) which receive(s) the device.

And in one preferred form of the present invention, the single elastic filament comprises a shape memory material, e.g., Nitinol, with the elastic filament transforming between its longitudinally-expanded, substantially linear configuration and its longitudinally-contracted, substantially three-dimensional configuration by temperature transition or by superelasticity.

And in one preferred form of the present invention, the shape memory material may comprise an appropriate nickel titanium alloy (e.g., Nitinol), an appropriate copper-based alloy (e.g., Cu—Zn—Al, Cu—Al—Ni, Cu—Al—Mn, Cu—Al—Be, etc.), and an appropriate iron-based alloy (e.g., Fe—Mn—Si, Fe—Cr—Ni—Mn—Si—Co, Fe—Ni—Mn, Fe—Ni—C, Fe—Pt, Fe—Pd, etc.), etc. Additionally, the shape memory material may comprise a shape memory polymer.

In order for a shape memory material to be capable of automatically transforming between a "first shape" and a "second shape" by temperature transition or by superelasticity, it is necessary to first process the shape memory material in a particular manner. More particularly, the shape memory material is initially formed with the "first shape" then it is mechanically transformed to the desired "second shape" and then, while mechanically held in the desired "second shape" (e.g., by a fixture), the shape memory material is heat treated, i.e., it is brought to an elevated temperature for a controlled length of time and then rapidly quenched so as to return the shape memory material to ambient temperature. This processing causes the shape memory material to retain its aforementioned "second shape", even after the device is released from the fixture. Thereafter, the shape memory material may be transformed from its "second shape" to its "first shape" (e.g., by temperature transition or by mechanical deformation) and then, when desired, automatically returned to its "second shape" (e.g., by a different temperature transition or by releasing the mechanical deformation).

Thus it will be seen that, in connection with the present invention, when the novel device is to be formed out of a shape memory material, with the "second shape" being the aforementioned longitudinally-contracted, substantially three-dimensional configuration and the "first shape" being the aforementioned longitudinally-expanded, substantially

linear configuration, the device must be held in its "second shape" on a fixture while the shape memory material is appropriately heat treated (e.g., heated and then rapidly quenched) so that the device will thereafter retain its "second shape" when it is released from the fixture.

In one preferred form of the present invention, the elastic filament comprises shape memory material wire (e.g., Nitinol wire), and the novel device is formed by first winding the elastic filament around a plurality of surface features (e.g., posts) disposed on (or in) a three-dimensional body (i.e., 10 "the fixture"), and then appropriately heat treating the elastic filament while it is retained on the fixture so that the elastic filament will retain the desired "second shape" (i.e., the aforementioned longitudinally-contracted, substantially three-dimensional configuration) when the device is 15 released from the fixture. See, for example, FIG. 108, which shows a novel device 400 comprising a single elastic filament 405, wherein the elastic filament 405 is wound around a plurality of posts 410 which are mounted on a threedimensional (e.g., spherical) body 415 (i.e., "the fixture") for 20 appropriate heat treatment. It will be appreciated that this approach may be used regardless of whether the single elastic filament has distinct first and second ends or has its first and second ends unified with one another (e.g., by welding, by banding, etc.) so as to effectively form a 25 continuous, closed loop.

The foregoing manufacturing approach, which may sometimes be referred to herein as the "winding" approach, is highly advantageous since it allows the elastic filament to be formed out of shape memory material wire (e.g., Nitinol 30 wire), which is well known in the art. As a result, it is possible to take advantage of the substantial body of general knowledge which already exists with respect fabricating, handling and heat treating shape memory material wire (e.g., Nitinol wire).

However, as noted above, this "winding" approach requires that the elastic filament be wound around surface features (e.g., posts) disposed on (or in) a three-dimensional body (i.e., "the fixture").

In another preferred form of the present invention, there 40 is provided an alternative manufacturing approach, which may sometimes be referred to herein as the "flat-to-3D" approach. Generally described, with this "flat-to-3D" approach, and looking now at FIGS. 109-111, a flat sheet 420 of shape memory material (e.g., Nitinol) is patterned so 45 as to create at least one, and preferably a plurality of, single filament, two-dimensional interim structures 425 (FIGS. 109) and 110). These single filament, two-dimensional interim structures 425 are thereafter released (i.e., separated) from the flat sheet 420 (e.g., by severing an attachment tab 430 50 connecting the single filament, two-dimensional interim structure 425 to the flat sheet 420 of shape memory material), and then mounted onto an appropriate three-dimensional body (i.e., "the fixture") for heat treating (i.e., heating dimensional interim structure 425 will thereafter assume the desired "second shape" (i.e., the aforementioned longitudinally-contracted, substantially three-dimensional configuration) 435 (FIG. 111) when the device is thereafter released from the fixture, whereby to provide the desired shape for 60

More particularly, the aforementioned longitudinally-contracted, substantially three-dimensional configuration 435 of the device (FIG. 111) is projected into a corresponding two-dimensional configuration 440 (FIG. 112) for the 65 device. This two-dimensional projection 440 of the device (FIG. 112) corresponds to the single filament, two-dimen-

sional interim structure 425 referred to above. This twodimensional projection 440 of the device (FIG. 112) is then used to fabricate the single filament, two-dimensional

24

interim structure 425 from a flat sheet 420 of shape memory material.

In one preferred form of the invention, and looking now at FIG. 113, a plurality of these single filament, twodimensional interim structures 425 are produced from one flat sheet 420 of shape memory material. This may be effected using a number of different fabrication techniques, including chemical etching, laser cutting, etc. Chemical etching is currently generally preferred, and may yield the single filament, two-dimensional interim structures 425 shown in FIGS. 114, 116 and 118, with each individual single filament, two-dimensional interim structure 425 being attached to the flat sheet 420 of shape memory material by at least one attachment tab 430. Preferably the single filament, two-dimensional interim structure 425 carried by the flat sheet 420 of shape memory material is then electropolished, which is a "reverse plating" process that electrochemically removes additional material. This occurs preferentially at sharp corners, where the electrical fields are the strongest, thereby advantageously rounding off sharp corners. See, for example, FIGS. 115, 117 and 119, which show the etched structures of FIGS. 114, 116 and 118, respectively, after electro-polishing.

Thereafter, the single filament, two-dimensional interim structure 425 is dismounted from the flat sheet 420 of shape memory material (e.g., by severing the one or more attachment tabs 430 holding the single filament, two-dimensional interim structure 425 to the flat sheet 420 of shape memory material), and then the freed single filament, two-dimensional interim structure 425 is mounted on an appropriate three-dimensional fixture so that the single filament, twodimensional interim structure 425 assumes the desired "second shape", i.e., the aforementioned longitudinally-contracted, substantially three-dimensional configuration.

See, for example, FIGS. 120-125, which show a two-part fixture 450 comprising a male half 455 and a female half 460. Male half 455 comprises a three-dimensional (e.g., spherical) body 465 having a plurality of posts 470 mounted thereon. Female half 460 comprises a three-dimensional (e.g., spherical) cavity 475 which is the substantial inverse of at least a portion of three-dimensional body 465. The single filament, two-dimensional interim structure 425 is set on the three-dimensional body 465 using posts 470 to stabilize the single filament, two-dimensional interim structure, and then the two halves 455, 460 are brought together so as to force the single filament, two-dimensional interim structure 425 to assume the desired "second" shape (i.e., the aforementioned longitudinally-contracted, substantially three-dimensional configuration).

With the single filament, two-dimensional interim strucand rapidly quenching), so that the single filament, two 55 ture 425 restrained in the desired "second shape" (i.e., the aforementioned longitudinally-contracted, substantially three-dimensional configuration), the device is heat treated (i.e., it is appropriately heated and then rapidly quenched to ambient temperature) so as to "train" the device to assume the desired "second shape" (i.e., the longitudinally-contracted, substantially three-dimensional configuration). The device may thereafter be dismounted from the three-dimensional fixture, whereby to provide the structure 435 shown in FIG. 111, and thereafter used in the manner previously discussed.

> In connection with the foregoing, the following additional points should be appreciated.

Device Design.

In certain circumstances, it may be desirable to form certain portions of the novel device with a stiffer characteristic than other portions of the device, which may require a more flexible characteristic. By way of example but not 5 limitation, by forming certain portions of the device with a stiffer characteristic, the ability of the device to return to its longitudinally-contracted, substantially three-dimensional configuration 435 (FIG. 111) may be enhanced. This can be extremely useful where the device is made with a relatively 10 thin elastic filament in order to fabricate a relatively small device, since a relatively thin elastic filament may not generate adequate return forces to restore the device to its longitudinally-contracted, substantially three-dimensional configuration 435 (FIG. 111) when the device is disposed in 15 a blood vessel (or vessels).

25

One way of providing regions of greater or lesser stiffness is by forming the elastic filament with regions of thicker or thinner dimensions. This is relatively easy to do with the "flat-to-3D" approach of the present invention, where the 20 single filament, two-dimensional interim structure **425** is being formed out of a large flat sheet **420** of shape memory material. In this case, the regions of greater stiffness are formed thicker (e.g., wider) and the regions of lesser stiffness are formed thinner (e.g., narrower).

By way of example but not limitation, where etching is used to fabricate the single filament, two-dimensional interim structure 425 from a flat sheet 420 of shape memory material, the process is essentially a substractive process where material is etched away. As a result, different thicknesses (e.g., widths) may be provided for the elastic filament by etching away more or less material from flat sheet 420. See, for example, FIG. 110, where portions 480 of single filament, two-dimensional interim structure 425 have a greater thickness (e.g., width) than portions 485 of single 35 filament, two-dimensional interim structure 425. This construction is retained in the longitudinally-contracted, substantially three-dimensional configuration 435 (FIG. 111) which is produced from the single filament, two-dimensional interim structure 425 after appropriate heat treatment 40 on a fixture (e.g., the two-part fixture 450 shown in FIGS. 120-125).

Another way of forming regions of greater or lesser stiffness is by forming the elastic filament with regions of differing cross-section. By way of example but not limita- 45 tion, where the device has a round cross-section, the device will tend to bend equally well in all directions when the bend occurs at that cross-section, but where the device has a rectangular cross-section, the device will tend to bend preferentially in certain directions when the bend occurs at that 50 cross-section. Accordingly, it is possible to form regions of greater or lesser stiffness by intentionally varying the crosssection of the device along its length, whereby to provide the device with the mechanical properties desired for various segments of the device. Again, this is relatively easy to do 55 with the "flat-to-3D" approach of the present invention, where the single filament, two-dimensional interim structure 425 is being formed out of a large flat sheet 420 of shape memory material via a subtractive process, since the subtractive process can be used to provide various cross- 60 sections at different points along the device.

Furthermore, the material (e.g., metallurgical) properties of the flat sheet 420 of shape memory material are not necessarily the same in all directions. By way of example but not limitation, the shape memory material may be 65 stronger in one direction than in another direction, e.g., the shape memory material may be stronger in the direction in

26

which it is rolled during the manufacturing process than in the opposing direction. By taking such factors into account when forming the single filament, two-dimensional interim structure 425 from the flat sheet 420 of shape memory material, it is possible to take advantage of varying material properties, e.g., so as to construct devices which can be better stretched or compressed in selected directions.

Etching.

Etching may be conducted from one side of flat sheet **420** or from both sides of flat sheet **420**, either concurrently or serially. Where etching is effected from both sides of flat sheet **420**, the resulting cross-sectional shape of the elastic filament may somewhat resemble a hexagon.

As a general rule, the etching process requires the provision of a space between the "solid" portions (i.e., the filament runs) of the device, where this space is approximately equal to the thickness of the flat sheet 420.

In one preferred form of the invention, flat sheet **420** is approximately 0.004 inch thick. In another form of the invention, flat sheet **420** is approximately 0.0053 inch thick. Electro-Polishing.

As noted above, electro-polishing is a "reverse plating" process which electrochemically removes material. It preferentially takes material away from sharp corners, where the electrical fields are the strongest. Rounding sharp corners is believed to be beneficial for the present invention, since it provides a gentle radius where the device touches tissue, and it reduces stress concentrations in the elastic filament. In addition, the rounding of corners will tend to bring the cross-section of the elastic filament to a near-circular shape, which will tend to increase ease of bending in any direction.

Electro-polishing removes material thickness as well. As a simple rule of thumb, electro-polishing creates about a 2× corner radius for a 1× decrease in material thickness. As a result, a 0.0005 inch thickness decrease results in a 0.001 inch radius on an outside corner.

FIGS. 126, 128 and 130 are views showing electropolishing to 0.00415 inch thick, and FIGS. 127, 129 and 131 are views showing electro-polishing to 0.0039 inch thick.

Electro-polishing can also change the surface properties of the shape memory material. By way of example but not limitation, flat sheet **420** typically has machining marks and other marks from the Nitinol sheet fabrication process. These marks may be minimized or diminished in the electropolishing process.

Electro-polishing can also change the surface finish of the device. Generally, the electro-polishing smooths the surface and makes it more corrosion resistant.

Tailoring the Cross-Section of the Device.

It should be appreciated that the cross-section of the device can affect the mechanical properties of the device when the device is subjected to various forces. By way of example but not limitation, where the device has a round cross-section, the device will tend to bend equally well in all directions when the bend occurs at that cross-section. By way of further example but not limitation, where the device has a rectangular cross-section, the device will tend to bend preferentially in certain directions when the bend occurs at that cross-section. Accordingly, in one form of the present invention, the device has a cross-section which is intentionally varied along its length in accordance with the mechanical properties desired for various segments of the device.

It will be appreciated that a desired cross-section can be achieved by appropriately selecting and implementing a specific manufacturing process, e.g., where etching is used to form the device, various etching parameters (including masking) can be adjusted so as to form a desired cross-

27

section, and/or where electro-polishing is used to form the device, various electro-polishing parameters (including masking) can be adjusted so as to form a desired crosssection, etc.

Forming the Final Three-Dimensional Structure from the 5 Two-Dimensional Interim Structure.

As noted above, the present invention comprises transforming the two-dimensional interim structure 425 (FIG. 110) into the final three-dimensional structure 435 (FIG. 111). As this transformation occurs, the spacing between the 10 filament lengths (i.e., runs) of the two-dimensional structure 425 is reduced in the three-dimensional structure 420. This is because the filament lengths move closer together as the device transforms from a two-dimensional structure to a three-dimensional structure (e.g., as the filament lengths 15 move from a planar arrangement to a spherical arrangement). As result, the design must provide adequate space between the filament lengths in the two-dimensional structure so as to permit appropriate spacing of the filament lengths in the three-dimensional structure.

Modifications

It will be appreciated that still further embodiments of the present invention will be apparent to those skilled in the art 25 in view of the present disclosure. It is to be understood that the present invention is by no means limited to the particular constructions herein disclosed and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the invention.

What is claimed is:

1. A device for positioning in a blood vessel adjacent to an aneurysm for causing thrombosis of the aneurysm while maintaining substantially normal flow through the blood vessel, said device comprising:

28

a single elastic filament configurable between:

- (i) an elongated, substantially linear configuration, whereby to facilitate movement along a blood vessel;
- (ii) a longitudinally-contracted, substantially three-dimensional configuration for lodging within the blood vessel, said longitudinally-contracted, substantially three-dimensional configuration providing (a) a face for positioning adjacent the aneurysm, said face comprising a plurality of lengths of said elastic filament in close proximity to one another so as to restrict blood flow to the aneurysm and thereby cause thrombosis of the aneurysm, and (b) a substantially open frame for holding said face adjacent the aneurysm, said substantially open frame configured so as to maintain substantially normal flow through the blood vessel;

wherein said single elastic filament is formed from a sheet of shape memory material;

- wherein said single elastic filament is formed from the sheet of shape memory material so as to provide the single elastic filament with has a width which varies along its length a cross-section which varies along its length:
- wherein said single elastic filament comprises a continuous closed loop.
- 2. A device according to claim 1 wherein the single elastic filament comprises two distinct ends which are unified so as to form a continuous closed loop.
- 3. A device according to claim 2 wherein the two distinct ends are unified by welding.
- 4. A device according to claim 2 wherein the two distinct ends are unified by banding.
- 5. A device according to claim 1 wherein the single elastic filament has a rectangular cross-section along at least a portion of its length.